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We study the region of small transverse momenta in qq̄- and gg-initiated processes with no colored
particle detected in the final state. We present the universal expression of the O �a2

s � logarithmically
enhanced contributions up to next-to-next-to-leading-order logarithmic accuracy. From there we extract
the coefficients that allow the resummation of the large logarithmic contributions. We find that the
coefficient known in the literature as B�2� is process dependent, since it receives a hard contamination
from the one-loop correction to the leading-order subprocess. We present the general result of B�2� for
both quark and gluon channels.

PACS numbers: 12.38.Bx, 12.38.Cy
The process in which a system of not strongly inter-
acting particles of large invariant mass Q2 [lepton pairs,
gauge boson(s), Higgs boson, and so forth] is produced in
hadronic collisions is a well studied subject in perturbative
QCD [1]. At transverse momenta q2

T of order of Q2

the cross section can be computed by using the standard
QCD-improved parton model. When qT becomes small,
the simple perturbative picture is spoiled. This happens
because large logarithmic corrections of the form log Q2

q2
T

arise due to an incomplete cancellation of soft and collinear
singularities between real and virtual contributions. These
large logarithmic corrections can be resummed to
0031-9007�00�85(22)�4678(4)$15.00
all orders by using the Collins-Soper-Sterman (CSS)
formalism [2].

We consider the class of inclusive hard scattering
processes,

h1h2 ! A1 1 A2 . . .An 1 X , (1)

where the collision of the hadrons h1 and h2 produces
a system of not strongly interacting final state particles
A1 . . .An carrying total momentum Q and total transverse
momentum qT . According to the CSS formula, and ne-
glecting terms which are finite in the limit qT ! 0, the
cross section can be written as (it is assumed that all other
dimensionful invariants are of the same order Q2)
ds

dq2
TdQ2df

�
X
a,b,c

Z 1

0
dx1

Z 1

0
dx2

Z `

0
db

b
2
J0�bqT �

ds
�LO�
cc̄

df
d�Q2 2 x1x2s�

3 � fa�h1 ≠ Cca�
µ
x1,
b2

0

b2

∂
� fb�h2 ≠ Cc̄b�

µ
x2,
b2

0

b2

∂
Sc�Q,b� , (2)
where df � dPS�Q ! q1, q2, . . . , qn� represents the
phase space of the system of noncolored particles,
b0 � 2e2ge , and s

�LO�
cc̄ is the leading-order cross section

(i.e., with no final state partons and therefore qT � 0) for
the given process (c, c̄ can be either qf , q̄f 0 or g, g). The
function Cab in Eq. (2) is a process-dependent coefficient
function, J0�bqT � is the Bessel function of the first kind,
and fi�h corresponds to the distribution of a parton i
in a hadron h. The large logarithmic corrections are
exponentiated in the Sudakov form factor

Sc�Q, b� � exp

(
2

Z Q2

b2
0 �b2

dq2

q2

∑
Ac���as�q2���� ln

Q2

q2

1 Bc���as�q2����

#)
. (3)

The functions Ac, Bc, and Cab in Eqs. (2) and (3) have
perturbative expansions in as,

Ac�as� �
X̀
n�1

µ
as

2p

∂n
A�n�
c , (4)
Bc�as� �
X̀
n�1

µ
as

2p

∂n
B�n�
c , (5)

Cab�as, z� � dabd�1 2 z� 1
X̀
n�1

µ
as

2p

∂n
C

�n�
ab �z� . (6)

In order to obtain the coefficients in Eqs. (4) and (5) at
a given order, the differential cross section at small qT
has to be computed at the same order. A comparison
with the power expansion in as of the resummed result in
Eq. (2) allows one to extract the coefficients that control
the resummation of the large logarithmic terms.

In this Letter we study the behavior of cross sections
at small transverse momenta at second order in as in both
the quark and the gluon channels. We find that the analytic
form of the logarithmically enhanced contributions can be
computed perturbatively in a universal manner by using
the recent knowledge on the infrared behavior of tree-level
[3,4] and one-loop [5] QCD amplitudes. In this way, we
are able to extract the coefficients A�1�

c , B�1�
c , C�1�

ab
, A�2�

c ,
and B�2�

c for any qq̄ or gg initiated process in the class
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(1). Details on our calculation will be given elsewhere [6].
Here we present and discuss only our main results.

By following Ref. [7] we multiply the differential cross
section, calculated at parton level, by q2

T and take mo-
ments with respect to z � Q2�s defining the dimension-
less quantity:

S�N� �
Z
dz zN

q2
TQ2

ds0�df

ds

dq2
T dQ2 df

. (7)

In the quark channel, for the sake of simplicity and in
order to compare our result for S�N� to the one origi-
nally obtained for Drell-Yan in Ref. [7], we restrict our
attention to the nonsinglet contribution to the cross section
defined by

sNS �
X
ff 0

�sqf q̄f0 2 sqfqf0 � . (8)

To have qT fi 0 at least one gluon must be emitted; thus
S�N� has the expansion

S�N� �
as

2p
S�1��N� 1

µ
as

2p

∂2

S�2��N� 1 · · · . (9)

In the following we will systematically neglect in S�N� all
contributions that vanish as qT ! 0.

In order to compute the small qT behavior of S�N� our
strategy is as follows. The singular behavior at small qT is
dictated by the infrared (soft and collinear) structure of the
relevant QCD matrix elements. At O �as� this structure
has been known for long time [3]. Recently, the universal
functions that control the soft and collinear singularities
of tree-level and one-loop QCD amplitudes at O �a2

s � have
been computed [4,5].

By using this knowledge, and exploiting the simple kine-
matics of the leading-order subprocess, we were able to
construct improved factorization formulas that allow us to
control all infrared singular regions avoiding any problem
of double counting [6]. We have used these improved for-
mulas to approximate the relevant matrix elements and
compute the small qT behavior of S�N� in a completely
universal manner.

The calculation at O �as� is straightforward, and we
recover the well-known results,

S
�1�
qq̄�N� � 2CF log

Q2

q2
T

2 3CF 1 2g�1�
qq �N� (10)

and

S�1�
gg�N� � 2CA log

Q2

q2
T

2 2b0 1 2g�1�
gg �N� . (11)

Here CF �
N2
c21
2Nc , CA � Nc, and TR � 1�2 are the

SU�Nc� QCD color factors; b0 �
11
6 CA 2

2
3nfTR and

g
�1�
qq �N�, g

�1�
gg �N� are the quark and gluon one-loop anoma-

lous dimensions, respectively. From Eqs. (10) and (11)
one obtains

A�1�
a � 2Ca, B�1�

a � 22ga, a � q,g , (12)

where Ca and ga are the coefficients of the leading
�1 2 z�21 singularity and d�1 2 z� term in the one-loop
Altarelli-Parisi kernels Paa, respectively,

Cq � CF , Cg � CA,

gq �
3
2
CF , gg � b0 . (13)

At this order it is possible to obtain also the coeffi-
cient C

�1�
ab by considering the qT integrated distribution and

including the renormalized virtual correction to the LO
amplitude cc̄ ! A1 1 A2 . . .An, summed over spins and
colors, which, at O �e0�, can be written as
M
�0�y
cc̄ �f�M �1�

cc̄ �f� 1 c.c. �
as

2p

µ
4pm2

Q2

∂e G�1 2 e�
G�1 2 2e�

µ
2

2Cc
e2 2

2gc

e
1 Ac�f�

∂
jM

�0�
cc̄ �f�j2. (14)
(All our results are obtained using the factorization
and renormalization prescriptions of the MS scheme
and within the framework of conventional dimensional
regularization.) In Eq. (14) the structure of the poles in
e � �4 2 d��2 is universal [8] and fixed by the flavor
of the incoming partons. The finite part A (which can
depend on the kinematics of the final state noncolored
particles) depends instead on the particular process in the
class (1) we want to consider. In the case of Drell-Yan we
have [9]

ADY
q � CF

µ
28 1

2
3

p2

∂
, (15)

whereas for Higgs production in the mtop ! ` limit the
finite contribution is [10]

AH
g � 5CA 1

2
3
CAp2 2 3CF � 11 1 2p2. (16)

By using the information in Eq. (14) we obtain, for C
�1�
ab ,
C
�1�
ab �z� � 2P̂e

ab�z� 1 dabd�1 2 z�

3

µ
Ca

p2

6
1

1
2
Aa�f�

∂
, (17)

where P̂e
ab�z� is the O �e� term in the Altarelli-Parisi

P̂ab�z, e� splitting kernel, given by

P̂e
qq�z� � 2CF�1 2 z� ,

P̂e
gq�z� � 2CFz ,

P̂e
qg�z� � 22TRz�1 2 z� ,

P̂e
gg�z� � 0 .

(18)

At order as the coefficients A
�1�
a and B

�1�
a are fully de-

termined by the universal Altarelli-Parisi splitting func-
tions. The function C�1�

ab
depends instead on the process

through the one-loop corrections to the LO matrix element.
The general expression in Eq. (17) reproduces correctly the
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coefficient C
�1�
ab for Drell-Yan [7], Higgs production in the

mtop ! ` limit [11], and gg production [12]. (The coef-

ficient C
�1�
qq for ZZ production in Ref. [13] is not correct.)

At second order in as, two different contributions to
S�2��N� have to be considered: the real correction corre-
sponding to the emission of one extra parton (i.e., two glu-
ons or a qq̄ pair) with respect to the O �as� contribution,
and its corresponding virtual correction.

The double-real emission contribution is the most diffi-
cult to compute. One has to integrate over the phase space
of the two unresolved final state partons keeping qT fixed
and finally perform the z integration in Eq. (7). We find
that, likewise S�1��N�, this contribution to S�2��N� is pro-
4680
cess independent; i.e., it does not depend on the particular
process in the class (1) we want to consider.

The virtual contribution is simpler to compute, and we
find it to be process dependent. More importantly, its
process dependence is fully determined by the function A
appearing in the one-loop correction to the LO subprocess
[see Eq. (14)].

In the following, for the sake of simplicity, we present
the total results for S�2��N� corresponding to the choice of
the factorization and renormalization scales fixed to Q2.
Since we are interested in extracting the coefficients A

�2�
q,g

and B
�2�
q,g, as in the O �as� case we concentrate on the

diagonal qq̄ and gg contributions to S�2��N�.
In the quark (nonsinglet) channel we obtain
S
�2�
qq̄�N� � log3Q

2

q2
T

�22C2
F� 1 log2Q

2

q2
T

�9C2
F 1 2CFb0 2 6CFg�1�

qq �N��

1 log
Q2

q2
T

∑
C2
F

µ
2
3

p2 2 7

∂
1 CFCA

µ
35
18

2
p2

3

∂
2

2
9
CFnfTR 1 2CFAq�f� 1 �2b0 1 12CF�g�1�

qq �N�

2 4�g�1�
qq �N��2 1 4C2

F

µ
1

�N 1 1� �N 1 2�
2

1
2

∂∏

1

∑
C2
F

µ
2

15
4

2 4z �3�
∂

1 CFCA

µ
2

13
4

2
11
18

p2 1 6z �3�
∂

2 3CFAq�f� 1 CFnfTR

µ
1 1

2
9

p2

∂

1 2g
�2�
�2��N� 1 2CFg�1�

qq �N�
µ

p2

3
1 2

1
�N 1 1� �N 1 2�

∂
1 2g�1�

qq �N�Aq�f�

2 2CF�b0 1 3CF�
µ

1
�N 1 1� �N 1 2�

2
1
2

∂∏
, (19)

whereas for the gluon channel the result is

S�2�
gg�N� � log3Q

2

q2
T

�22C2
A� 1 log2Q

2

q2
T

�8CAb0 2 6CAg�1�
gg �N��

1 log
Q2

q2
T

∑
C2
A

µ
67
9

1
p2

3

∂
2

20
9
CAnfTR 1 2CAAg�f� 1 2b0�g�1�

gg �N� 2 b0�

2 4�g�1�
gg �N� 2 b0�2 2 4nfg

�1�
gq �N�g�1�

qg �N�
∏

1

∑
C2
A

µ
2

16
3

1 2z �3�
∂

1 2CFnfTR 1
8
3
CAnfTR 2 2b0

µ
Ag�f� 1 CA

p2

6

∂

1 2g�2�
gg �N� 1 2g�1�

gg �N�
µ
Ag�f� 1 CA

p2

3

∂
1 4CFnfg

�1�
qg �N�

1
�N 1 2�

∏
. (20)
In Eq. (19), g
�2�
�2��N� is the nonsinglet spacelike two-loop

anomalous dimension [14]; in Eq. (20), g
�2�
gg �N� is the sin-

glet spacelike two-loop anomalous dimension [15]; z �n�
is the Riemann z function [z �3� � 1.202 . . .], and the
function Aa�f� is defined through Eq. (14). The coeffi-
cients 1

�N11� �N12� and 1
�N12� have origin on the N moments

of 2P̂e
qq�z� and 2P̂e

gq�z�, respectively.
The N-dependent part of the results in Eqs. (19)

and (20) agrees with the one obtained from the sec-
ond order expansion of Eq. (2) (see, e.g., Ref. [16]).
By comparing also the N-independent part we obtain
for A�2�
A�2�
a � KA�1�

a , K � CA

µ
67
18

2
p2

6

∂
2 nfTR

10
9

,

(21)

in agreement with the results of Refs. [17,18]. Moreover,
we find that B�2� can be expressed as

B�2�
a � 22dP�2�

aa 1 b0

µ
2
3
Cap

2 1 Aa�f�
∂

,

a � q, g , (22)

where dP�2�
aa

are the coefficients of the d�1 2 z� term in
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the two-loop splitting functions P
�2�
aa �z� [14,15], and are

given by

dP�2�
qq � C2

F

µ
3
8

2
p2

2
1 6z �3�

∂

1 CFCA

µ
17
24

1
11p2

18
2 3z �3�

∂

2 CFnfTR

µ
1
6

1
2p2

9

∂
,

dP�2�
gg � C2

A

µ
8
3

1 3z �3�
∂

2 CFnfTR 2
4
3
CAnfTR .

(23)

From Eq. (22) we see that B�2�, besides the 22dP
�2�
aa

term which matches the expectation from the O �as� result,
receives a process-dependent contribution controlled by
the one-loop correction to the LO amplitude [see Eq. (14)].
We conclude that the Sudakov form factor in Eq. (3) is
actually process dependent beyond next-to-leading-order
logarithmic accuracy. The interpretation of this result will
be given elsewhere [19].

However, by using the general expression in Eq. (22)
it is possible to obtain B�2� for a given process just by
computing the one-loop correction to the LO amplitude for
that process. For the case of Drell-Yan, by using Eq. (15),
our result for S

�2�
qq̄�N� agrees with the one of Ref. [7], and

we confirm

B�2�DY
q � C2

F

µ
p2 2

3
4

2 12z �3�
∂

1 CFCA

µ
11
9

p2 2
193
12

1 6z �3�
∂

1 CFnfTR

µ
17
3

2
4
9

p2

∂
. (24)

In the case of Higgs production in the mtop ! ` limit, by
using Eq. (16) we find

B�2�H
g � C2

A

µ
23
6

1
22
9

p2 2 6z �3�
∂

1 4CFnfTR

2 CAnfTR

µ
2
3

1
8
9

p2

∂
2

11
2
CFCA . (25)

In particular, this result allows one to improve the
present accuracy of the matching between resummed
predictions [20] and fixed-order calculations [21].

To summarize, we have studied the logarithmically en-
hanced contributions at small transverse momentum in
hadronic collisions at second order in perturbative QCD.
The calculation was performed in a process-independent
manner, allowing us to show that the Sudakov form fac-
tor is actually process dependent beyond next-to-leading-
order logarithmic accuracy. We have provided a general
expression for the coefficient B�2� for both quark and gluon
initiated processes.
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