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We have recently proposed a dynamical mechanism that may realize a flat four-dimensional space-
time as a brane in type IIB superstring theory. A crucial role is played by the phase of the chiral
fermion integral associated with the IKKT (Ishibashi-Kawai-Kitazawa-Tsuchiya) matrix theory, which
is conjectured to be a nonperturbative definition of type IIB superstring theory. We demonstrate our
mechanism by studying a simplified model, in which we find that a lower-dimensional brane indeed
appears dynamically. We also comment on some implications of our mechanism on model building of

the brane world.
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Introduction.—The idea that our four-dimensional
space-time is realized as a brane in a noncompact higher-
dimensional space-time has recently attracted much
attention. Through many works during the last few years,
it is expected to provide natural resolutions to many long-
standing problems in the standard model. The hierarchy
problem is transmuted into a geometrical one [1], and it
was further argued that the exponential dependence of the
“warp” factor in the extra directions reduces the problem
to a fine-tuning of the order of 50 [2]. The cosmological
constant problem may also be resolved in such a setup [3].
It has been argued that any nonzero higher-dimensional
cosmological constant is absorbed into the warp factor, and
that the four-dimensional cosmological constant is auto-
matically tuned to zero (or to a very small number). A
possible obstruction to the idea (as opposed to a more
conventional idea using Kaluza-Klein compactifications)
is that gravity may propagate in higher dimensions and
thereby contradicts the 4D Newton’s law observed in the
low energy scale. However, the particular (anti—de Sitter)
AdS-type background metric that arises naturally in such
a setup allows a normalizable zero mode of the graviton
bound to the brane [4]. A small correction to the 4D
Newton’s law due to the continuum spectrum of massive
modes is argued to be small enough to be compatible with
the experimental bound. All these attractive features of
the idea lead us to hope that there is a natural string-theory
realization of the brane world scenario.

In Ref. [5], we have proposed a dynamical mechanism
which may realize a flat four-dimensional space-time as a
brane in type IIB superstring theory. Obviously, such a
mechanism should inevitably be of nonperturbative nature.
Indeed, our mechanism was based on the Ishibashi-Kawai-
Kitazawa-Tsuchiya (IKKT) version [6] of the matrix the-
ory [7], namely, the IIB matrix model, which is conjectured
to be a nonperturbative definition of type IIB superstring
theory. The model is a supersymmetric matrix model
composed by ten N X N Hermitian bosonic matrices and
sixteen N X N Hermitian fermionic matrices. The space-
time is represented by the eigenvalues of the bosonic ma-
trices. The model has manifest ten-dimensional Lorentz
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invariance, where the bosonic and fermionic matrix ele-
ments transform as a vector and a Majorana-Wey! spinor,
respectively. The integral over the fermionic matrices
yields a Pfaffian which is complex in general. This poses
a technical difficulty known as the “complex action” prob-
lem in studying the IIB matrix model by Monte Carlo
simulation. Monte Carlo studies incorporating only the
modulus of the Pfaffian (and omitting the phase by hand)
showed that the space-time becomes isotropic in ten di-
mensions in the large-N limit [8,9]. This result suggests
that the phase of the Pfaffian must play a crucial role if
a brane world naturally arises in the type IIB superstring
theory. The effect of the phase is to favor configurations
for which the phase becomes stationary. Such an effect
has been studied within a saddle-point approximation and
found to enhance lower-dimensional branelike configura-
tions considerably [5].

In this Letter, we demonstrate our mechanism more ex-
plicitly by studying a simplified model using Monte Carlo
simulation. In this case, we find that the dominant saddle
points are given by configurations with only three-
dimensional extent.

The mechanism.— The IIB matrix model [6] is formally
a zero-volume limit of D = 10, N' = 1, pure super Yang-
Mills theory. The partition function of the IIB matrix
model (and its generalizations to D = 4 and D = 6) can
be written as

Zig = jdAe*Shzf[A], (1)

where S, = —Tr([A,,A,?)/4, and T[A] = —InZ[A]
represents the effective action induced by integration over
the fermionic matrices. The dynamical variables A, (u =
1,...,D) are D bosonic N X N graceless Hermitian
matrices. Expanding A, as A, = 25:71 Af 1" in terms of
the generators t* (a = 1,...,N> — 1) of SU(N),qthe inte-
gration measure dA is given as dA = ]_[ﬁ: 1 2’;1 dAj,.
The generators ¢ are normalized as Tr(17t?) = 28,,.
The fermion integral Z¢[A] is complex in general for
D =10,N = 4andforD = 6, N = 3[5,11]. We restrict
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ourselves to these cases in what follows. In the D = 10
case, the fermion integral Z[A] is given by the Pfaffian
PfM, where M isa 16(N> — 1) X 16(N? — 1) complex
antisymmetric matrix defined by

Maa,bﬁ = Tr{ta(Cr,u,)a,B[A,u,’tb]} (2)

regarding each of (aa) and (b B) as a single index. Here,
'y (uw=1,...,10) are ten-dimensional Weyl-projected
16 X 16 gamma matrices, satisfying CT,Ct = (I',)"
with C = C T being the unitary charge conjugation ma-
trix. Similarly in the D = 6 case, the fermion integral
Z[A] is given by the determinant detM ©), where M (©
isa4(N?> — 1) X 4(N? — 1) complex matrix defined by

M s = T () g4, 1T 3)

regarding each of (aa) and (b B) as a single index. Here,
F/(f) (u =1,...,6) are six-dimensional Weyl-projected
4 X 4 gamma matrices.

Since the fermion integral Z([A] is a complex quan-
tity for the cases under consideration, let us write it as
Zi[A] = exp(—=T'® — iT'D). In Ref. [5], the effect of the
phase I' in the path integral (1) has been studied using a
saddle-point approximation, whose validity has been also
discussed. The saddle-point equation for I') is given by

ar®
dAY,

It is useful to introduce the following classification of
“brane” configurations:

Qq=[{A A n( =1,....D —d),nVA, = 0], (5)

where ng) (i=1,...,D — d)are (D — d) linearly inde-
pendent D-dimensional real vectors. Namely, {); repre-
sents a set of configurations with less than d-dimensional
extent. Note that Q; C Q, C --- C Qp, where Qp is
nothing but the whole configuration space of the model.
In Ref. [5] we proved that all configurations in Qp_»
are solutions to the saddle-point equation (4). Assuming
that the configurations in {}p_, are the dominant saddle-
point configurations, we still have to integrate over those
configurations to determine the actual dimensionality of
the space-time. In fact, the Gaussian fluctuation of the
phase ') around the saddle points gives a huge enhance-
ment to the brane configurations with lower dimensional-
ity, and this enhancement cancels exactly the entropical
barrier against having such configurations. In the D = 10
case, this provides a dynamical mechanism for the possible
appearance of four-dimensional space-time as a brane in
ten-dimensional space-time.

A simplified model.—1In order to investigate how our
mechanism works, we consider a simplified model describ-
ing an integration over the saddle-point configurations.
Specifically, we consider the integral

7 — f A ¢~ BFIAT-7/1A] ©)

where the functions F[A] and f[A] are defined as

=0 Vau. 4

D N’-—1 aTH\2

FlA]| = R 7
D N?-1

A=Y D> A~ ®)
m=1 a=l

Since the function F[A] vanishes if and only if the configu-
ration {A,} satisfies the saddle-point equation (4), the in-
tegral (6) is dominated by the saddle-point configurations
in the large-B limit. The function f[A] makes the inte-
gral (6) convergent as long as the coefficient y is fixed
to be a real positive number. In fact, the parameter y
can be absorbed by an appropriate rescaling of Aj and
. Therefore we take y = 1/2 in what follows without
loss of generality. Note also that the simplified model (6)
is invariant under a SO(D) transformation A, — A, ,A,,
where A, € SO(D), and a SU(N) transformation A, —
gA,gt, where g € SU(N), which are the symmetries of
the original model (1).

Using the invariance of the partition function (6) under
the change of variables Aj, — AAj,, one can obtain an
exact relation

S = BB =N =), )

where the ensemble average () is defined with the parti-
tion function (6). Assuming that  f)z goes to a constant
¢ for B — o, we obtain the asymptotic behavior of (F)g
for large B as

b
(F)g ~ E

where the coefficient b is given as b = ¢/2 — D(N? —
1)/2. This confirms the above claim that the integral
(6) is dominated by the saddle-point configurations in the
large-B limit.

A quantity which fully characterizes the dimensionality
d of a given configuration can be given by the moment
of inertia tensor 7" defined by the D X D real symmetric
matrix [10]

(10)

N2—1
Tuw = > ASLAL. an
a=1

A configuration {A,} belongs to g, if and only if the
number of zero eigenvalues of the matrix 7 is more than or
equal to (D — d). Let us denote the eigenvalues of the
matrix 7 as A; (i = 1,...,D), where Ay = A, = --- =
Ap = 0. We can determine the dimensionality of the domi-
nant saddle-point configurations from the ensemble aver-
age of the eigenvalues (A;)g in the 8 — o limit.

We address this issue by performing Monte Carlo simu-
lation using a Metropolis algorithm. We create a trial con-
figuration {A], } by replacing an element A¢, of the previous
configuration{A , } with anew one generated with the proba-
bility distribution \/% exp[— %(A;‘L)z]. The trial configura-
tion is accepted with the probability min[1, exp(—BAF)],
where AF = F[A"] — F[A]. This procedure is repeated
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for all the elements of the configuration. The computa-
tional effort required for the above algorithm is of the
order of O(N®) per one sweep, which is much larger
than that for the simulation encountered in Refs. [8,12].
Because of this, results with high statistics are obtained
only for the case of D = 6 and N = 3 (we have made
192 000 accepted updates for each 8 = 384 and 768 000
for B = 512).

Results.—In the upper part of Fig. 1 we plot the left-
hand side of (9), which demonstrates the validity of our
simulation. In the lower part of Fig. 1 we plot the average
(F[A])g against B in a log-log scale. The straight line
represents the fit of the data for 8 = 16 to the predicted
large-B behavior (10) with b = 1.7(1).

Figure 2 shows the six eigenvalues of the moment of in-
ertia tensor 7" as a function of 8. We find that the three
smallest eigenvalues (A;)g (i = 4,5, 6) are monotonously
decreasing with a pronounced power law behavior. Fitting
the data for 8 = 16 to the power law behavior, we extract
the powers —0.040(4), —0.199(2), and —0.450(6), respec-
tively. Similarly, the powers for N = 4 are extracted to be
—0.11(1), —0.26(2), and —0.36(2). Thus we conclude that
the dominant saddle-point configurations of the simplified
model (6) have only three-dimensional extent. Preliminary
results for D = 10, N = 4 suggest that this is the case also
for D = 10.

Discussion.—The results presented in the previous sec-
tion show clearly that the stationarity of the phase I'”
indeed enhances lower-dimensional brane configurations
considerably, thus demonstrating our mechanism. In par-
ticular, while the existence of saddle-point configurations
other than the configurations in {)_, is not excluded, our
results suggest that such configurations, even if they exist,
can safely be neglected on statistical grounds. Given this

25

24++‘t++“”H*H"“

fl[A)/2 — BF[A]
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FIG. 1. In the upper part, we plot the left-hand side of Eq. (9)
against 8 for D = 6 and N = 3. The dashed line represents the
exact result %(N 2 — 1) = 24. In the lower part, the function
(F[A])p is plotted against B in a log-log scale. The straight line
represents a fit to the predicted large- 8 behavior (F[A])s ~ b/B.
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observation, the reason why we obtain the dimensionality
“three” from the dominant saddle-point configurations of
the simplified model (6) can be understood analytically.
As has been done in Ref. [5] for the IIB matrix model, we
can rewrite the 8 — o0 limit of the simplified model (6) as
an integral over the configurations in {1p_,. The Gauss-
ian fluctuation of the phase I'” should be taken into ac-
count by the corresponding Hesse matrix, which is, in the
present case, just the square of the one for the IIB matrix
model (or its D = 6 version). Because of this, the Gauss-
ian fluctuation enhances lower-dimensional brane configu-
rations even more strongly than in the IIB matrix model
and overwhelms the entropical barrier against having those
configurations.

The fact that the lowering of the dimensionality stops at
three instead of continuing further down can be understood
as follows. We first note that the fermion integral Z[A]
vanishes for configurations in ), [5]. Therefore, the phase
I'® is actually ill defined for configurations in Q5. Still,
we can consider configurations with A, A, being generic
and A; (i = 3,...,D) being of order €. One can easily
see that the function F[A] is diverging as € 2 for € — 0.
Therefore, the 8 term in (6) suppresses configurations in
), strongly. (In other words, configurations in (), are not
saddle-point configurations, although Q, C Qp_5.)

As is clearly shown in the present work, the enhance-
ment occurs precisely when the space-time becomes a flat
lower-dimensional hyperplane, which we consider as a
very attractive feature of our mechanism. Namely, our
mechanism has a built-in structure in which the brane that
appears as a result of the nonperturbative string dynamics
is very likely to be flat. According to our mechanism, sce-
narios with two separated branes (i.e., our world and the
so-called “Planck” brane as in Ref. [2]), their extensions to

10
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FIG. 2. The six eigenvalues (A;)g of the moment of inertia
tensor T are plotted against 8 in a log-log scale for D = 6
and N = 3. The straight lines for the smallest three eigenvalues
represent the fits to the power law behavior.
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many branes [13], and scenarios with mutually intersect-
ing branes [14] seem to be unnatural.

Let us also comment on a connection of our mecha-
nism to the brane world scenario. In Ref. [15], the IIB
matrix model is expanded around a D3-brane configura-
tion perturbatively and four-dimensional noncommutative
Yang-Mills theory has been obtained [16]. The (perturba-
tively stable) theory, which is obtained in this way from
the IIB matrix model, has been recently identified [18]
with a type 1IB superstring theory in AdSs X S° with an
infinite B-field background. Remarkably the metric that
appears in the corresponding supergravity solution takes
the form of Randall-Sundrum’s type [4], and thereby al-
lows for a four-dimensional Newton’s law. We expect that
brane configurations similar to the D3-brane configuration
considered above as a background in the 1IB matrix model
should appear dynamically as a result of our mechanism.
Thus our mechanism is rather directly related to the brane
world scenario.

In the IIB matrix model, the enhancement and the en-
tropical barrier are exactly balanced and the actual dimen-
sionality of the brane is expected to be determined as a
result of large N dynamics. In this regard, we recall that
the low energy effective theory of the IIB matrix model has
been shown to be described by a branched-polymer-like
system in Ref. [19]. There it was further argued that a
typical double-tree structure that appears in the effective
theory might cause a collapse of the configuration to a
lower-dimensional manifold. Whether the actual dimen-
sionality of the brane turns out to be four or not can be in-
vestigated directly by performing the integration over the
saddle-point configurations as formulated in Ref. [5]. We
hope that Monte Carlo techniques developed in Ref. [8]
will enable us to address such an issue in the near future.
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