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We propose a new mechanism for formation of topological defects in a U(1) model with a local gauge
symmetry. This mechanism leads to definite predictions, which are qualitatively different from those of
the Kibble-Zurek mechanism of global theories. We confirm these predictions in numerical simulations,
and they can also be tested in superconductor experiments. We believe that the mechanism generalizes

to more complicated theories.
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When a global symmetry is spontaneously broken in a
phase transition, it is generally accepted that the formation
of topological defects is well described by the Kibble-
Zurek (KZ) scenario [1,2]. As the transition takes place in
a finite time, the correlation length of the order parameter
cannot keep up with its equilibrium value, which diverges
at the transition point. The maximum correlation length
reached determines the average distance of the defects in
the final state [1], and it can be estimated from the critical
dynamics of the theory [2]. This scenario has been tested in
many numerical simulations [3,4] and in experiments with
SHe [5] and “He [6]. Although the experimental results
for “He are in disagreement with the theory, the general
picture is believed to be correct.

However, in theories where the relevant symmetry is
a local gauge invariance, e.g., in superconductors or in
cosmology [7], the validity of the KZ scenario has been
questioned [8], although lattice simulations [9] have found
compatible results. Evidence that the KZ scenario might
not work in these cases has been provided by recent ex-
periments on YBa;Cu3O7—s superconductors [10]. Instead
of detecting individual vortices, the authors measured the
total net flux through the whole system, and found it to
be zero within the accuracy of the experimental setup, in
contradiction with predictions of the KZ scenario.

The purpose of this Letter is to suggest a simple and
intuitive picture for defect formation in theories with local
gauge symmetries. This picture is quite different from the
KZ scenario and leads to definite predictions, which we
have confirmed in numerical simulations. Furthermore,
they can also be tested in superconductor experiments.

Let us first review the KZ picture for the global case
and consider for simplicity a U(1) symmetric field theory
in D spatial dimensions. In the broken phase, the vac-
uum manifold is topologically a circle and the topological
defects are therefore vortices with dimensionality D — 2.
The Hamiltonian contains a gradient term |V¢|?, where
¢ = vexp(if) is the order parameter field. Deep in the
broken phase, the gradient term implies that V6 = 0 in
equilibrium. Thus the phase angle is correlated at infinitely
long distances, but since it takes an infinitely long time
for the system to achieve that, after the transition 6 will
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be approximately constant only inside domains of size £,
given by the maximum correlation length reached during
the transition, and its value will be uncorrelated between
these domains [1]. Since vortices are characterized by a
nonzero change of 6 around a closed loop, they are formed
where three domains meet with a probability that is inde-
pendent of the size of the domains. Consequently, the fi-
nal vortex number in the global case behaves as N ~ & —2,
The value of ¢ can be estimated from the critical slowing
down of the dynamics during the transition [2].

If the symmetry is local, there is another, competing
mechanism, which dominates if the transition is suffi-
ciently slow. In the temporal gauge Agp = 0, the Hamil-
tonian for a relativistic gauged U(1) scalar field theory in
three spatial dimensions is

H=/Q%[%ﬁ+%ﬁtum2+m¢v+ww]
)

where 11 = do¢ is the canonical momentum, E = —80;1
and B = V X A the electric and magnetic field strengths,
and V(¢) the potential of the scalar field. The correspond-
ing equations of motion are

05 = D*¢ — V'(¢),
90E =V X B + 2¢Im¢p*Do,
V-E=2eImp*dpd. )

(Note that we use units with kg = =c = puy = 1.)
More generally, we will consider the analogous system in
D spatial dimensions. Because the gradient has been re-
placed by a covariant derivative 13¢ = Vcé + ie;\d), the
energy is minimized in the broken phase if V6 = —eA. In
the presence of a magnetic flux, this condition cannot be
satisfied everywhere and frustrations, vortices, are formed.
Although the magnetic flux is zero on the average, the ther-
mal fluctuations give it a nonzero variance. When the sys-
tem enters the broken phase, it tries to rearrange the field
configuration to minimize the magnetic flux and the energy
associated with it. Because of the finite time available,
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this is not possible for the fluctuations with the longest
wavelengths, and they freeze in their initial form; but at
shorter distances the fluctuations of the magnetic flux are
smoothed out. Therefore, immediately after the transition,
before the flux is localized into vortices, its configuration
consists of domains inside which it is approximately uni-
form and which have some characteristic size 3 .

If we calculate the winding number around a curve C,
which encircles one of the domains discussed above, it
typically does not vanish, but instead

1 . 2 e - = e
nc=%fcdr Vo = . fcdr A= 27T(I)C’
(3)

where @ is the magnetic flux through the curve C. Be-
cause the flux rearrangements at the transition were able
to change only its distribution inside the domain, ®¢ has
the same value it had in the symmetric phase. We can
estimate it in the standard way by calculating the energy
E(®d) associated with the flux. Inside the domains, the
flux is uniform and therefore

Pc
32
Requiring E(®¢) = T gives the typical value of the flux

2
E(Pc) = 3”( ) = Pl 4)

Using Egs. (3) and (5), we can now estimate the area
density of vortices after the transition. Suppose we have
in our D-dimensional space a surface of area A, then it is
split into ~A$ ~2 domains in the transition. Each domain
contains Ny = (e/2m)®¢ vortices, and we will assume
that No = 1. Then, the total number of vortices piercing
the surface per unit area is

e s
N/A =~ — T12¢~P2, (6)

In particular, at D = 2, N ~ &L,

In addition, vortices will also be formed by a variant
of the KZ mechanism. Initially, these vortices behave like
global vortices, but eventually a quantum of magnetic flux
is generated inside each of them, making them truly local
vortices. However, the KZ mechanism is important only
if the transition is very rapid or the temperature very low,
i.e., No = 1. Thus we will neglect it in the following.

At D = 3, the vortices formed inside the domains form
a network at distances longer than £, and in this network
most vortices will be in the form of closed loops, which
will quickly shrink into a point and disappear. Therefore it
is useful to consider a borderline case between D = 2 and
D = 3, where one of the dimensions L, is very short. As
long as L, < é , the vortices will wind around the short
dimension rather than forming loops, and therefore they

will be stable. Now the domains have the form of a short
cylinder, and the estimate (6) generalizes easily to this
case, yielding
N/A ~ i TV2LVRET 12, %)
The correlations between the vortices in the final state
will also be different from those predicted by the KZ
mechanism. Let us consider a system after the transition
and assume that there is a vortex with a positive winding
at point x. In the KZ scenario, the distance to the nearest
other vortex should be roughly E . If we calculate the wind-
ing number n¢(r) of a circular loop C of radius r centered
at x, it follows that at » < .f:t , the winding number is close
to one. However, at distances r = 2 , the phase angle is
independent of whether there is a vortex inside at X or not,
and therefore nc(r) = 0. Thus, in the KZ scenario,

1, rs§¢,
e = {128 ®)

Again, our case is very different. Inside a single domain,
all vortices have the same sign, and nc(r) is therefore an
increasing function of r at r < &. At r = &, nc(r) gets
contributions from different domains, and since they are
all independent they average to zero and nc(r) becomes a
constant. The behavior in our scenario is therefore totally
different from Eq. (8):

1 + cor?,
ner) = {1+ 0

<
g ©)
where ¢y = 0 and ¢; = 1 are constants.

Finally, let us discuss the dependence of {:f on the
“quench” time scale 7p, which parametrizes the rate at
which the phase transition takes place. For definiteness,

we consider the potential

V(g) = m*(1)lp* + Mol (10)

where the mass parameter is changed linearly across its
critical value

m(t)? = m> — 6m* . (11)
TQ
In reality, m? is not equal to zero when thermal fluctua-
tions are taken into account, but let us use the mean-field
approximation in the following, in which case it is.

If we know the photon dispersion relation @ = w(k) at
the transition point and its neighborhood, we can estimate
that a Fourier mode of wave number k; falls out of equi-
librium during the transition if the adiabaticity condition
is not satisfied

dow (k)
dt
However, the calculation of the dispersion relation is

beyond the scope of this Letter, and we will instead
consider only two simple special cases: the overdamped

> |w(k)|>. (12)
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case (OD), where the dynamics is dominated by a k-
independent damping rate 7y, and the underdamped case
(UD) with the free-field dispersion relation:

o =iy '(k* + m3) (OD),  (K* + m2)"? (UD).

(13)

These same special cases have been discussed in the con-
text of global theories in Ref. [4], but we stress that it is
by no means clear that the dynamics is well described
by either of these cases. Furthermore, we assume that
the photon mass for the relevant modes behaves as mi ~
2¢2|#|?, and that |¢|? is given by its equilibrium value
61> = —m2(1)/2A ~ t/7q.

Now Eq. (12) tells us that the highest wave numbers that
fall out of equilibrium behave as

1/4 1 /3

k ~ (OD), (UD). (14)
The domain size & is then simply given by & =~ 27 /k,
and using Eq. (6), we can write down the dependence of
the final vortex number on 7 in two dimensions as

N ~ 751/4

©D), " @Wp). (5
In the KZ scenario, the analogous exponents are —1/2 and
—2/3, respectively [4].

We carried out a set of numerical simulations using the
equations of motion (2) in the temporal gauge Ag = 0 to
test the results in Egs. (7), (9), and (15). Our coupling
constants were ¢ = 0.3 and A = 0.18. Since A > ¢2, the
transition is continuous, as in a type II superconductor.
We used periodic lattices of size 120 X 120 X L., where
L, = 5 or 20 (in units where the lattice spacing is one). We
prepared a set of initial conditions according to the thermal
distribution exp(—H /T) at T = 6 using a hybrid Monte
Carlo algorithm and followed the time evolution using a
leapfrog algorithm with time step 8¢ = 0.05, changing the
mass parameter according to

4 1
m*(t) = mj — 5m2(3— arctan - + §> (16)

aa TQ

Here m§ = —1.6 is the initial value at 1 = —7o when the
quench begins, and m? = 3.2 was chosen in such a way
that the transition takes place at t = 0. As in Eq. (11), the
rate of change of m? is proportional to 7, but in this form,
we reach an equilibrium state at late times, which makes
comparison of different quench rates easier. The details of
the simulations will be discussed in Ref. [11].

In the final state, the vortices have only short-range
interactions, and therefore they freeze quickly into their
final configuration. After that, at t = 79 + 400, we lo-
cated the vortices from the field configuration by mea-
suring the gauge-invariant winding numbers of individual
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FIG. 1. The number of vortices in the final state as a function

of 7o. The L, = 5 data have been scaled by a factor of 1/2 in
accordance with Eq. (7). The solid and dashed lines are the fits
to Eq. (17) (see Table I) and correspond to the cases L, = 20
and L, = 5, respectively.

plaquettes [12] and connecting plaquettes with nonzero
winding numbers into vortex lines. We then measured
the total number of those vortex lines that wind around
the short dimension of our lattice. The results are shown
in Fig. 1 as a function of 7y. The results from the thin-
ner lattice L, = 5 have been divided by 2, because ac-
cording to Eq. (7) the results from the two lattices should
then be on top of each other. Each data point is an aver-
age of ~20 runs starting from different initial configura-
tions drawn from the thermal ensemble.

In slow transitions, the data agree very well with the
predicted power-law behavior. At 79 < 40-50, the L, =
20 data become independent of 7o, which suggests that
& < L., and part of the vortices have formed loops and do
not contribute to the vortex count. We fitted the function
ct, “

, To < T¢,
f(TQ;C,Tc,a):{CTCQa’ e

TQ = Te, (a7

into the data, and the results are given in Table I. Both
cases agree with the overdamped prediction « = —0.25.
Moreover, the ratio of the results from L, = 5 and L, =
20 measured at, say, 7o = 100, is 1.8 * 0.2, which is
compatible with the value 2 predicted by Eq. (7).

Using our data, we can also perform a more quantitative
check for Eq. (7) even without knowledge of the dynamics
that determines f if we assume that f = L, at the turning
pointin the L, = 20 data. By substituting thls into Eq. (7),

TABLE 1. Fit of the data to the functional form (17). Results
from both simulations are compatible with the overdamped ex-
ponent a = 0.25 [see Eq. (15)].

C Te o XZ

=5 495*x26 85=*17 0250 %x0013 6.73
=20 312 =*67 541 =137 0274 =0.039 12.09
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*+
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FIG. 2. The net number of vortices within distance r from
a vortex with positive winding in a slow (circles) and a fast
(triangles) quench on a thin lattice (L, = 5). The dotted line is
the corresponding curve for uncorrelated vortex-antivortex pairs.
The fact that the data points are well above the random curve
shows that there is a positive correlation between vortices at
short distances.

we find that the number of vortices formed at 79 < 7. in
the L, = 20 case should be N = 19, which agrees within
a factor of 2 with the numerical result.

We can also test Eq. (9) by measuring the net number
of vortices inside a circle of radius r centered at a vortex.
The results for two different values of 79 with L, =5
are shown in Fig. 2, together with the benchmark curve
ne =1 — 7r?A~!, which corresponds to a uniform ran-
dom distribution of vortex-antivortex pairs and shows the
effect of the finite system size. At short distances, the data
points are significantly above this curve, which indicates
a positive correlation between vortices, and at long dis-
tances, they follow the benchmark curve. Both of these
results agree with Eq. (9) but differ from the KZ predic-
tion (8).

Our results disagree with the simulations in Ref. [9],
where the authors found an exponent « that was compat-
ible with the global theory. We believe that the temperature
used there, 7 = 0.01, was so low that practically all of the
vortices were formed by the KZ mechanism.

Since our mechanism can only increase the number of
vortices formed in a transition from that predicted by the
KZ mechanism, it cannot explain the failure in Ref. [10] to
find any total net magnetic flux when a superconductor film
was quenched into the superconducting phase. However,
the experiment does not rule it out either, because the vor-
tices formed by the KZ mechanism might avoid detection
by being expelled from the film before generating observ-
able magnetic flux. The extra magnetic flux predicted by
our mechanism is fairly small, because it can change only
the flux distribution at short distances. The minimal energy
for a configuration with a given value ® of flux through

the film is that of a magnetic dipole, Eqj, = ,u,alA_l/2<I>2.
Using the values T = 90 K and A = 1 cm?, we find that
the predicted number of flux quanta is

N ~ = (uoksT)2AV* =~ 2, (18)
h

which is below the resolution of the experiment. A similar
estimate applies for a recent Josephson junction experi-
ment [13], where N = 7 flux quanta were observed. In
this case, the prediction of the KZ scenario is N = 4, and
thus the experiment cannot decide between the two mecha-
nisms. It seems that our scenario can be confirmed only
by experiments in which not only the total flux but also the
spatial distribution of the vortices can be measured.

To summarize, our numerical simulations confirm the
results in Eqgs. (7) and (9), which are independent of as-
sumptions about the dispersion relation w (k). Using the
naive overdamped dispersion relation (13), we can also re-
produce accurately the exponents « in Table I. This sup-
ports strongly the scenario presented in this Letter.
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