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Scattering rates for a Goldreich-Sridhar (GS) spectrum of anisotropic, incompressible, magnetohydro-
dynamic turbulence are calculated in the quasilinear approximation. Because the small-scale fluctuations
are constrained to have wave vectors nearly perpendicular to the background magnetic field, scattering
is too weak to provide either the mean-free paths commonly used in Galactic cosmic-ray propagation
models or the mean-free paths required for acceleration of cosmic rays at quasiparallel shocks. Where
strong pitch-angle scattering occurs, it is due to fluctuations not described by the GS spectrum, such as
fluctuations generated by streaming cosmic rays.

PACS numbers: 98.70.Sa, 52.30.–q, 52.35.Ra, 95.30.Qd
The scattering of energetic particles by turbulent mag-
netic and electric fields plays an important role in the ac-
celeration and propagation of cosmic rays [1–7]. The
turbulent fields responsible for cosmic-ray scattering can
be excited by the cosmic rays themselves or by some
mechanism that is independent of the cosmic rays. This
paper focuses upon the latter case. In previous treat-
ments of scattering, different turbulence models have been
used, including fluctuations with wave vectors k parallel to
the ambient large-scale magnetic field B0 (slab symme-
try) or perpendicular to B0 (2D), or power spectra that are
isotropic in k space [7–10]. On the other hand, a number
of studies suggest that, in magnetohydrodynamic (MHD)
turbulence excited by large-scale stirring, small-scale fluc-
tuations have nonzero values of kk that are øk�, where k�

and kk are the components of k perpendicular and parallel
to B0 [11–13]. In this paper, the quasilinear approxima-
tion [14] is used to calculate general scattering rates for
incompressible MHD turbulence and also shear-Alfvénic
turbulence on the non-MHD scales shorter than the col-
lisional mean-free path of thermal particles [11]. These
rates are then evaluated for the Goldreich-Sridhar power
spectrum [11], which has significant power at small scales
only for k� ¿ kk. The condition k� ¿ kk is found to sig-
nificantly decrease the efficiency of pitch-angle scattering
relative to the slab-symmetric and isotropic cases. Astro-
physical applications and limitations of quasilinear theory
(QLT) are discussed.

It is assumed that there is an inertial-range spectrum of
fluctuations extending from some large scale l to a much
smaller scale d, with the fluctuations at scales �l dominat-
ing the total magnetic energy. Only cosmic rays with gyro-
radii r ø l are considered. A scale l0 is introduced, with
r ø l0 ø l. The energetically dominant fluctuations on
scales .l0 are treated as a uniform field B0. The magnetic
fluctuations on scales ,l0, denoted B1, are small compared
to B0 and are treated using QLT. It can be verified a pos-
teriori that the QLT scattering rates are independent of l0

to lowest order in r�l. In contrast to most previous treat-
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ments, the turbulence is treated as strong, in the sense that
fluctuations decorrelate in one linear wave period.

In QLT, the turbulence causes the cosmic rays to diffuse
in momentum space, with the diffusion coefficients deter-
mined by the statistical properties of the turbulence [15],
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where f is the cosmic-ray distribution function averaged
over the small scales of the fluctuating fields, p is momen-
tum, u (the pitch angle) is the angle between p and B0, and
j � cosu. In Eq. (1) it has been assumed that the length
scale characterizing variations in f is large compared to
r, so that f can be taken to be independent of gyrophase.
At each k, B1 and the incompressible turbulent velocity
U1 are decomposed into shear-Alfvén and pseudo-Alfvén
components by projecting along the appropriate polariza-
tion vectors [11]. These components are denoted, respec-
tively, by the superscripts s and p, so that

B1�k, t� � Bs
1�k, t� 1 B

p
1 �k, t� , (2)

with an analogous equation for U1�k, t�. The electric field
is given by Ohm’s Law, E1 � 2�1�c�U1 3 B0. The nor-
malized power spectra of the shear-Alfvén modes are given
by

Ms�k�, kk, t� � �Bs
1�k, t� ? Bs�

1 �k, t 1 t���B2
0 , (3)

Cs�k�, kk, t� � �Us
1�k, t� ? Bs�

1 �k, t 1 t���yAB0 , (4)

and

Ks�k�, kk, t� � �Us
1�k, t� ? Us�

1 �k, t 1 t���y2
A , (5)

with analogous equations for the pseudo-Alfvén modes,
where yA is the Alfvén speed associated with B0,
and �· · ·� denotes an ensemble average. It is assumed
that the turbulence is homogeneous and stationary,
that �B1�x, t�B1�x 1 r, t 1 t�� � �B1�x, t�B1�x 2 r,
t 1 t�� with analogous equations for �U1U1� and �U1B1�
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(no magnetic or kinetic helicity), that �U1�x, t�B1�x 1 r, t 1 t�� � �U1�x, t�B1�x 1 r, t 2 t�� (which gives Djp �
Dpj), and that the shear-Alfvén and pseudo-Alfvén modes are statistically independent.

The contributions to the momentum diffusion coefficients from the shear-Alfvén modes and pseudo-Alfvén modes are,
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where d � yA�y, z � k�r, r � y��V, V is the
cosmic-ray gyrofrequency, y� and yk are the cosmic-ray
velocity components perpendicular and parallel to B0,
L is the dimension of a window function that multiplies
the variables before a Fourier transform is taken, and
the arguments of K , C, and M are �k, t�. Since the
shear-Alfvén and pseudo-Alfvén modes are statistically
independent, Djj � Ds

jj 1 D
p
jj , etc. Equations (6) and

(7) are derived using a standard method based on the
linearized Vlasov equation [14], modified to treat strongly
turbulent fluctuations instead of waves satisfying linear
dispersion relations. Alternatively, they can be derived
from Eqs. (7a)–(7c) of [15], if one notes the typographical
error on the eighth line of Eq. (7a), namely, that QRk

should instead be QkR .
A Goldreich-Sridhar spectrum of strong, anisotropic

MHD turbulence [11] is now assumed, with
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for �l0�21 , k� , d21 with d ! 0, where tk �
�l�yA� �k�l�22�3 is the Lagrangian correlation time
appropriate for strong anisotropic incompressible MHD
turbulence, and

g�x� �

Ω
1 if jxj , 1
0 if jxj $ 1

. (9)

The spectrum of Eq. (8) is also taken to describe the fluc-
tuations on scales between l0 and l, and the normaliza-
tion has been chosen so that the total magnetic energyR`

l21 k� dk�

R`

2` dkk Ms�k�, kk, 0�B2
0�4 � L3B2

0�8p . At
small scales in MHD turbulence, there is equipartition be-
tween magnetic and kinetic energies, so that Kp � Mp

and Ks � Ms. It is assumed that Mp � Ms and Cp �
Cs � sMs, where the arguments of each of these spec-
tra are �k�, kk, t�, and where the fractional cross helicity
s [ �21, 1� is independent of k.

In many applications, there are two small parameters,
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For sinu ¿ e1�2, one finds from Eqs. (6) and (7) and the
assumed forms of the power spectra that, to lowest order
in e and d,
0BB@ Ds

jj

Ds
jp

Ds
pp

1CCA �
y

l

"
2e3�2jcosuj11�2

13 sinu

n�X̀
n�1

n29�2 2
d lne

3
sin2u

# 0BB@ 1
2spd

p2d2

1CCA , (11)

and 0BB@
D

p
jj

D
p
jp

D
p
pp

1CCA �
y

l

(
2e3�2jcosuj7�2 sinu

13

n�X̀
n�1

n29�2 2
d lne

6
sin4u

cos2u

∑
1 2

yA

yk

arctan

µ
yk

yA

∂∏) 0BB@ 1
2spd

p2d2

1CCA . (12)
The terms on the right-hand sides of Eqs. (11) and (12)
proportional to e3�2 correspond to fluctuations satisfying
the magnetostatic gyroresonance condition kkyk � nV,
which states that the Doppler-shifted frequency of a static
magnetic fluctuation in the reference frame of an ener-
getic particle’s motion along B0 is an integral multiple
of the particle’s gyrofrequency. A fluctuation is seen as
static when a cosmic ray passes through one wavelength
of the fluctuation in a time �kkyk�21 ø tk. The gy-
roresonant terms in Eqs. (11) and (12) are much smaller
than in the case of slab-symmetric or isotropic turbu-
lence for sinu ¿ e1�2 because Eqs. (8) and (9) imply that
k� . k

3�2
k l1�2, so that fluctuations satisfying kkyk � nV
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also satisfy k�r . n3�2e21�2 sinu cos23�2u ¿ 1. The
condition k�r ¿ 1 implies that a cosmic ray traverses
many uncorrelated fluctuations of the required kk during
a single gyro orbit. The effects of these uncorrelated fluc-
tuations tend to cancel. The weakening of gyroresonant
scattering due to this gyro-orbit averaging would occur for
any power spectrum in which all fluctuations on scales øl
satisfy k� ¿ kk. The terms on the right-hand sides of
Eqs. (11) and (12) proportional to �2 lne�d correspond to
nonresonant interactions. In Eq. (12) the nonresonant term
arises from the n � 0 term in Eq. (7), which represents the
effects of the magnetic-mirror force of the pseudo-Alfvén
modes (transit-time damping). This term becomes large as
u ! p�2, since, as yk ! yA, particles can “surf” mag-
netic mirrors moving at speeds �yA more effectively.

For sinu ø e1�2, scattering is dominated by magneto-
static gyroresonant interactions with shear-Alfvén modes,
and to lowest order in e and d0BB@ Ds
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Although Djj vanishes as u ! 0, the pitch-angle scat-
tering frequency n � 2Djj��1 2 j2� (which unlike Djj

is independent of u for isotropic scattering) approaches
�p�4� �y�l� as u ! 0. Gyroresonant interactions are
stronger for u & e1�2 than for u ¿ e1�2, because when
u & e1�2 the modes satisfying kkyk � nV also satisfy
k�r & 1, so that a cosmic ray doesn’t traverse many
uncorrelated resonant modes during a single gyro-orbit.

In Fig. 1, the pitch-angle scattering frequency n from
Eqs. (11) and (12) is plotted with the solid line, and the
limiting value of n as sinu ! 0 from Eq. (13) is given
by the dashed lines. The 3 symbols indicate numerical
evaluations of n from Eqs. (6) and (7) for the assumed
spectra in which only those terms in the infinite sum with
jnj # 10 are kept and in which l0 � 0.1l (see beginning
of this paper). The values e � 1023 and d � 1023 have
been used. (s, which only weakly affects h, has been set
to 0.) The characteristic values n � y�l for sinu , e1�2,
n � d21y�l for jp 2 uj , d, and n � ��2 lne�d 1

e3�2�y�l for moderate pitch angles can be extrapolated to
all values of e and d much less than 1 in the quasilinear
approximation.

When n is sufficiently large, f0 becomes nearly
isotropic, and the pitch-angle-averaged distribution f can
be treated in the diffusion approximation [7,16],
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where l is the distance along a field line, and the ellip-
sis indicates the omission of the advection and adiabatic-
acceleration terms. The coefficient of spatial diffusion
along B0 is given by [16]
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FIG. 1. The u dependence of the pitch-angle scattering fre-
quency n � 2�Ds

jj 1 D
p
jj���1 2 j2� for e � d � 1023. The

3 symbols indicate numerical evaluations of Eqs. (6) and (7),
the solid line gives the analytical results of Eqs. (11) and (12),
and the dashed lines give the limiting value from Eq. (13) of n
as sinu ! 0.

To lowest order in e and d when e3�2 ø �2 lne�d, QLT
gives
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[In this paper, from Eq. (11) on, Mp � Ms; however, if
either Mp or Ms is set to zero, Eq. (16) becomes k
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yl�22d lne�21.] To lowest order in e and d when
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averaged momentum diffusion coefficient in Eq. (14) is
given by [16]
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To lowest order in e and d, QLT gives

D
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When s2 � 1, Dp vanishes since the small-scale fluctua-
tions all travel in a single direction along B0 at the speed
yA, and, in the reference frame that follows their motion,
particle energies are conserved.

Although QLT is a useful and standard tool, it suffers
from important inaccuracies. QLT assumes that during the
time a particle is correlated with a turbulent fluctuation,
the orbit of that particle is the same as in a uniform
magnetic field. However, field-strength fluctuations �jBj
with �jBj�jBj 
 a ø 1 magnetically trap cosmic
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rays with jjj & a1�2. (For incompressible turbulent
fluctuations, which have phase velocities �yA along
the magnetic field, and for cosmic rays with y ¿ yA,
the trapping condition is essentially the same as if the
fluctuations were stationary.) The trajectories of such
trapped particles differ greatly from the trajectories of
particles in a uniform field, violating the QLT assump-
tions. Because the integral in Eq. (18) is dominated by
values of jjj & d ø 1 for which trapping is important,
the value of Dp in Eq. (19) is unreliable. Similarly, when
�2 lne�d ø e3�2, the integral in Eq. (15) is dominated
by small jjj, and thus the value of kk in Eq. (17) is
unreliable. In addition, assuming an unperturbed particle
orbit in the presence of a slowly and nonperiodically
varying E1 or B1 leads to spurious changes in a particle’s
magnetic moment m � my

2
��2B0, which, as an adiabatic

invariant, should be virtually conserved when E1 and B1
vary on a time scale ¿V21. The nonresonant terms in
Eqs. (11) and (12) arise from slowly varying modes and
imply such spurious changes in m, thereby significantly
overestimating nonresonant pitch-angle scattering. Since
kk in Eq. (16) is determined by this nonresonant pitch-
angle scattering, Eq. (16) underestimates kk.

Although the QLT results for the key particle-transport
coefficients are inaccurate, QLT does show that reso-
nant scattering by MHD turbulence with k� ¿ kk is
much weaker than resonant scattering by slab-symmetric
or isotropic fluctuations. Moreover, Eq. (16) as a lower
bound on kk has important implications. If B0 � 5 mG,
l � 100 pc, and yA � 106 cm�s [parameters character-
istic of the interstellar medium (ISM)], then e � 2.2 3

1029EGeV for a relativistic proton, where EGeV is the
proton’s energy in GeV, and d � 3.3 3 1025. If EGeV ø
106, then e3�2 ø �2 lne�d, and Eq. (16) gives a lower
limit to the scattering mean-free path kk�y of 430 kpc 3

�20 2 lnEGeV�21. This value is so large that, if the
power-law spectrum of interstellar turbulence inferred
from observations [17] is described by Eq. (8), then
some mechanism besides such turbulence must be in-
voked to explain the confinement of cosmic rays to
the Galaxy [6]. At energies &102 103 GeV, such a
mechanism is provided by resonant MHD waves that
cosmic rays themselves excite, but at higher energies it is
believed that self-confinement does not work [5,6]. For
EGeV . 102 103, cosmic-ray confinement and isotropiza-
tion can be explained even if turbulent scattering is
weak if one takes into account molecular-cloud magnetic
mirrors [18]. If the interstellar turbulence generated by
supernovae and stellar winds is described by Eq. (8), the
inefficient scattering associated with such turbulence may
indicate that quasiparallel shocks are unable to accelerate
cosmic rays up to the �106 GeV energies at the “knee” of
the galactic cosmic-ray energy spectrum [2,19], although
this suggestion is controversial [20]. Quasiperpendicular
shocks, however, may be able to accelerate cosmic rays to
the knee and beyond [21,22].
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