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Connectivity of Growing Random Networks
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A solution for the time- and age-dependent connectivity distribution of a growing random network
is presented. The network is built by adding sites that link to earlier sites with a probability Ak which
depends on the number of preexisting links k to that site. For homogeneous connection kernels, Ak � kg ,
different behaviors arise for g , 1, g . 1, and g � 1. For g , 1, the number of sites with k links,
Nk , varies as a stretched exponential. For g . 1, a single site connects to nearly all other sites. In the
borderline case Ak � k, the power law Nk � k2n is found, where the exponent n can be tuned to any
value in the range 2 , n , `.

PACS numbers: 84.35.+i, 05.40.–a, 05.50.+q, 87.18.Sn
Random networks play an important role in epidemi-
ology, ecology (food webs), and many other fields. The
geometry of such fixed topology networks have been ex-
tensively investigated [1–7]. However, networks based
on human interactions, such as transportation systems,
electrical distribution systems, biological systems, and the
Internet, are open and continuously growing, and new ap-
proaches are rapidly developing to understand their struc-
ture and time evolution [8–12].

In this Letter, we apply a rate equation approach to solve
the growing random network (GN) model, a special case
of which was introduced in [13] to account for the distri-
bution of citations and other growing networks [13–18].
Our approach is ideally suited for the GN and is much
simpler than the standard probabilistic [1] or generating
function [2] techniques. The rate equation formulation can
be adapted to study more general evolving graph systems,
such as networks with site deletion and link rearrangement.

The GN model is defined as follows. At each time step,
a new site is added and a directed link to one of the earlier
sites is created. In terms of citations, we may interpret the
sites in Fig. 1 as publications, and the directed link from
one paper to another as a citation to the earlier publication.
This growing network has a directed tree graph topology
where the basic elements are sites which are connected by
directed links. The structure of this graph is determined
by the connection kernel Ak , which is the probability that
a newly introduced site links to an existing site with k
links (k 2 1 incoming and 1 outgoing). We will solve for
the connectivity distribution Nk�t�, defined as the average
number of sites with k links as a function of the connection
kernel Ak .

We focus on a class of homogeneous connection kernels,
Ak � kg , with g $ 0 reflecting the tendency of preferen-
tial linking to popular sites. As we shall show, the con-
nectivity distribution crucially depends on whether g is
smaller than, larger than, or equal to unity. For g , 1,
the connectivity distribution decreases as a stretched expo-
nential in k. The case g . 1 leads to phenomenon akin to
0031-9007�00�85(21)�4629(4)$15.00
gelation [19] in which a single “gel” site connects to nearly
every other site of the graph. For g . 2, this phenome-
non is so extreme that the number of connections between
other sites is finite in an infinite graph. A power law distri-
bution Nk � k2n arises only for g � 1. In this case, finer
details of the dependence of the connection kernel on k
affect the exponent n. Hence we consider a more general
class of asymptotically linear connection kernels, Ak � k
as k ! `. We show that n is tunable to any value in the
range 2 , n , `. In particular, we can naturally generate
values of n between 2 and 3, as observed in the web graph
[10–12] and in movie actor collaboration networks [13].

The rate equations for the time evolution of the connec-
tivity distribution Nk�t� are

dNk

dt
�

1
Mg

��k 2 1�gNk21 2 kgNk� 1 dk1 . (1)

The first term accounts for the process in which a site with
k 2 1 links is connected to the new site, leading to a gain
in the number of sites with k links. This happens with
probability �k 2 1�g�Mg , where Mg�t� �

P
jgNj�t� pro-

vides the proper normalization. A corresponding role is
played by the second (loss) term on the right-hand side of
Eq. (1). The last term accounts for the continuous intro-
duction of new sites with no incoming links.
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FIG. 1. Schematic illustration of the evolution of the growing
random network. Sites are added sequentially and a single link
joins the new site to an earlier site.
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We start by finding the low-order moments Mn�t� of
the connectivity distribution. Summing Eqs. (1) over all
k gives the rate equation for the total number of sites,
�M0 � 1, whose solution is M0�t� � M0�0� 1 t. The

first moment (the total number of bond end points) obeys
�M1 � 2, which gives M1�t� � M1�0� 1 2t. The first two

moments are therefore independent of g, while higher
moments and the connectivity distribution itself do depend
on g.

For the linear connection kernel, Eqs. (1) can be solved
for an arbitrary initial condition. We limit ourselves to the
most interesting asymptotic regime (t ! `) where the ini-
tial condition is irrelevant. Using M1 � 2t, we solve the
first few of Eqs. (1) and obtain N1 � 2t�3, N2 � t�6, etc.,
which implies that the Nk grow linearly with time. Ac-
cordingly, we substitute Nk�t� � tnk in Eqs. (1) to yield
the recursion relation nk � nk21�k 2 1���k 1 2�. Solv-
ing for nk then gives

nk �
4

k�k 1 1� �k 1 2�
. (2)

To solve the model with a sublinear connection kernel,
0 , g , 1, notice that Mg satisfies the obvious inequali-
ties M0 # Mg # M1. Consequently, in the long-time
limit

Mg � mt, 1 # m # 2 , (3)

with a yet undetermined prefactor m � m�g�. Now substi-
tuting Nk�t� � tnk and Mg � mt into Eqs. (1) and again
solving for nk we obtain

nk �
m

kg

kY
j�1

µ
1 1

m

jg

∂
21

, (4)

whose asymptotic behavior is

nk �

8>><
>>:

k2g exp�2m� k12g2212g

12g �� 1
2 , g , 1 ,

k�m221�2� exp�22m
p

k � g � 1
2 ,

k2g exp�2m
k12g

12g 1
m2

2
k122g

122g � 1
3 , g ,

1
2 ,

(5)

etc. This pattern in (5) continues ad infinitum: Whenever
g decreases below 1�m, with m a positive integer, an
additional term in the exponential arises from the now
relevant contribution of the next higher-order term in the
expansion of the product in Eq. (4).

To complete the solution for the nk , we need to estab-
lish the dependence of the amplitude m on g. Using the
defining relation Mg�t � m �

P
k$1 kgnk , together with

Eq. (4), we obtain the implicit relation for m�g�,

m �
X̀
k�2

kY
j�2

µ
1 1

m

jg

∂21

. (6)

Despite the simplicity of this exact expression, it is not easy
to extract explicit information except for the limiting cases
g � 0 and g � 1, where m � 1 and m � 2, respectively,
and the corresponding connectivity distributions are given
4630
by nk � 22k and by Eq. (2). However, numerical evalu-
ation shows that m varies smoothly between 1 and 2 as g

increases from 0 to 1 (Fig. 2). This result, together with
Eq. (4), provides a comprehensive description of the con-
nectivity distribution in the regime 0 # g # 1. It is worth
emphasizing that for 0.8 & g & 1, nk depends weakly on
g for 1 # k # 1000. Thus, it is difficult to discriminate
between different g’s and even to distinguish a power law
from a stretched exponential in the GN model. This sub-
tlety was already encountered in the analysis of the citation
distribution [15,16].

A striking feature of the GN model is that we can “tune”
the exponent n by augmenting the linear connection ker-
nel to the asymptotically linear connection kernel, with
Ak ! a`k as k ! `, but otherwise arbitrary. For this
asymptotically linear kernel, by repeating the steps lead-
ing to Eq. (4) we find

nk �
m

Ak

kY
j�1

µ
1 1

m

Aj

∂
21

. (7)

Expanding the product in Eq. (7) leads to nk � k2n with
n � 1 1 m�a`, while the amplitude m is found from

m � A1

X̀
k�2

kY
j�2

µ
1 1

m

Aj

∂21

. (8)

As an explicit example, consider the connection kernel
A1 � 1 and Ak � a`k for k $ 2. In this case, we can
reduce Eq. (8) to a quadratic equation from which we ob-
tain n � �3 1

p
1 1 8�a` ��2 which can indeed be tuned

to any value larger than 2.
The GN model with superlinear connection kernels,

g . 1, exhibits a “winner takes all” phenomenon, namely,
the emergence of a single dominant gel site which is linked
to almost every other site. A particularly singular behavior
occurs for g . 2, where there is a nonzero probability that
the initial site is connected to every other site of the graph.
To determine this probability, it is convenient to consider a
discrete time version process where one site is introduced
at each step which always links to the initial site. After N
steps, the probability that the new site will link to the
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FIG. 2. The amplitude m in Mg�t� � mt vs g.
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initial site is Ng��N 1 Ng�. This pattern continues
indefinitely with probability

P �
Ỳ
N�1

1
1 1 N12g

. (9)

Clearly, P � 0 when g # 2 but P . 0 when g . 2.
Thus for g . 2 there is a nonzero probability that the
initial site connects to all other sites.

To determine the behavior for general g . 1, we need
the asymptotic time dependence of Mg . To this end, it
is useful to consider the discretized version of the mas-
ter equations Eq. (1), where the time t is limited to inte-
ger values. Then Nk�t� � 0 whenever k . t and the rate
equation for Nk�k� immediately leads to

Nk�k� �
�k 2 1�gNk21�k 2 1�

Mg�k 2 1�

� N2�2�
k21Y
j�2

jg

Mg� j�
. (10)

From this and the obvious fact that Nk�k� must be less than
unity, it follows that Mg�t� cannot grow more slowly than
tg . On the other hand, Mg�t� cannot grow faster than tg

as follows from the estimate:

Mg�t� �
tX

k�1

kgNk�t�

# tg21
tX

k�1

kNk�t� � tg21M1�t� . (11)

Thus Mg ~ tg . In fact, the amplitude of tg is unity as will
be derived self-consistently after solving for the Nk’s.

We now use Mg � tg in the rate equations to solve re-
cursively for each Nk . Starting with the equation �N1 �
1 2 N1�Mg , the second term on the right-hand side is sub-
dominant; neglecting this term gives N1 � t. Continuing
this same line of reasoning for each successive rate equa-
tion gives the leading behavior of Nk ,

Nk � Jktk2�k21�g for k $ 1 , (12)

with Jk �
Qk21

j�1 jg��1 1 j�1 2 g��. This pattern of be-
havior for Nk continues as long as its exponent k 2 �k 2

1�g remains positive, or k , g��g 2 1�. The full be-
havior of the Nk may be determined straightforwardly by
keeping the next correction terms in the rate equations. For
example, N1 � t 2 t22g��2 2 g� 1 . . . .

For k . g��g 2 1�, each Nk has a finite limiting value
in the long-time limit. Since the total number of connec-
tions equals 2t and t of them are associated with N1, the
remaining t links must all connect to a single site which
has t connections (up to corrections which grow no faster
than sublinearly with time). Consequently, the amplitude
of Mg equals unity, as argued above.

Thus for superlinear kernels, the GN undergoes an in-
finite sequence of connectivity transitions as a function of
g. For g . 2 all but a finite number of sites are linked to
the gel site which has the rest of the links of the network.
This is the “winner takes all” situation. For 3�2 , g , 2,
the number of sites with two links grows as t22g , while the
number of sites with more than two links is again finite.
For 4�3 , g , 3�2, the number of sites with three links
grows as t322g and the number with more than three is fi-
nite. Generally, for m11

m , g ,
m

m21 , the number of sites
with more than m links is finite, while Nk � tk2�k21�g for
k # m. Logarithmic corrections also arise at the transition
points.

The connectivity distribution leads to an amusing con-
sequence for the most popular site. Its connectivity kmax
is determined by

P
k.kmax

Nk � 1; that is, there is one site
whose connectivity lies in the range �kmax, `�. This crite-
rion gives

kmax �

8<
:

�lnt�1��12g� 0 # g , 1 ;
t1��n21� asymptotically linear;
t superlinear.

(13)

Since t also equals the total number of sites, we can com-
pare this prediction about the most popular site with avail-
able data from the Institute of Scientific Information based
on 783 339 papers with 6 716 198 total citations (details in
Ref. [16]). Here the most cited paper had 8904 citations.
This accords with the first line of Eq. (13) for g � 0.86,
and also with the second when n � 2.5.

In addition to the connectivity of a site, we also may
ask about its age. Within the GN model, older sites should
clearly be more highly connected. We quantify this feature
and also determine how the connection kernel affects the
combined age and connectivity distribution. Note that our
model does not have explicit aging where the connection
kernel depends on the age of each site; this feature is
treated in Ref. [17].

Let ck�t, a� be the average number of sites of age a
which have k 2 1 incoming links at time t. Here age a
means that the site was introduced at time t 2 a. The
quantity ck�t, a� evolves according to

≠ck

≠t
1

≠ck

≠a
�

1
Mg

��k 2 1�gck21 2 kgck� 1 dk1d�a� .

(14)

The second term on the left-hand side accounts for the
aging of sites, while the right-hand side accounts for the
(age independent) connection changing processes. Con-
sider first the linear kernel, Ak � k. Let us focus again
on the most interesting limit, namely, asymptotic behav-
ior. Then we can disregard the initial condition and write
M1�t� � 2t. This transforms Eq. (14) intoµ

≠

≠t
1

≠

≠a

∂
ck �

�k 2 1�ck21 2 kck

2t
1 dk1d�a� .

(15)

The homogeneous form of this equation suggests that so-
lution should be self-similar. Specifically, one can seek a
solution as a function of the single variable a�t rather than
two separate variables, ck�t, a� � fk�a�t�. This simplifies
4631
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the partial differential equation (15) into an ordinary dif-
ferential equation for fk�x� which can easily be solved. In
terms of the original variables of a and t, we find

ck�t, a� �

r
1 2

a
t

∑
1 2

r
1 2

a
t

∏k21

. (16)

Notice that this age distribution satisfies the normaliza-
tion requirement, Nk�t� �

Rt
0 da ck�t, a�. As expected,

young sites (those with a�t ! 0) typically have a small
connectivity while old sites have large connectivity. Fur-
ther, old sites have a broad distribution of connectivities
up to a characteristic number which asymptotically grows
as �k	 � �1 2 a�t�21�2 as a ! t. These properties and
related issues may be worthwhile to investigate in citation
and other information networks.

Similarly, we can obtain ck�t, a� for the GN model
with an arbitrary homogeneous connection kernel [20]
which grows slower than linearly in k. Assuming a self-
similar solution ck�t, a� � fk�a�t�, applying a Laplace
transform, we find a recursion relation for f̂k whose so-
lution is identical in structure to Eq. (4). Although it ap-
pears impossible to perform the inverse Laplace transform
in explicit form for arbitrary k, we can compute ck�t, a�
for small k; for example, we find c1 � �1 2 a�t�1�m. The
behavior also simplifies in the large-k limit. Here we find
that the age of sites with k links is peaked about the value
ak which satisfies

ak

t



8<
:

1 2 exp�2m
k12g

12g � g , 1 ;

1 2
12

�k13� �k14� g � 1 .
(17)

This shows how old sites are better connected.
In summary, we solved for both the connectivity dis-

tribution and the age-dependent structure of the growing
random network. The most interesting connectivity arises
in a network with an asymptotically linear connection ker-
nel. Here the number of sites with k connections has the
power-law form Nk � k2n , with n tunable to any value in
the range 2 , n , `. This accords with the connectivity
distributions observed in various contemporary examples
of growing networks.
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Note added.—While writing this manuscript we learned
of Ref. [21] which overlaps some of our results. We thank
J. Mendes for informing us of this work.
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