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A common property of many large networks, including the Internet, is that the connectivity of the
various nodes follows a scale-free power-law distribution, P(k) = ck~%. We study the stability of such
networks with respect to crashes, such as random removal of sites. Our approach, based on percolation
theory, leads to a general condition for the critical fraction of nodes, p., that needs to be removed before
the network disintegrates. We show analytically and numerically that for &« = 3 the transition never
takes place, unless the network is finite. In the special case of the physical structure of the Internet
(a = 2.5), we find that it is impressively robust, with p. > 0.99.
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Recently there has been increasing interest in the for-
mation of random networks and in the connectivity of
these networks, especially in the context of the Internet
[1-9]. When such networks are subject to random break-
downs—a fraction p of the nodes and their connections
are removed randomly — their integrity might be compro-
mised: when p exceeds a certain threshold, p > p., the
network disintegrates into smaller, disconnected parts. Be-
low that critical threshold, there still exists a connected
cluster that spans the entire system (its size is propor-
tional to that of the entire system). Random breakdown
in networks can be seen as a case of infinite-dimensional
percolation. Two cases that have been solved exactly are
Cayley trees [10] and Erd6s-Rényi (ER) random graphs
[11], where the networks collapse at known thresholds p..
Percolation on small-world networks (i.e., networks where
every node is connected to its neighbors, plus some ran-
dom long-range connections [12]) has also been studied
by Moore and Newman [13]. Albert et al. have raised the
question of random failures and intentional attack on net-
works [1]. Here we consider random breakdown in the
Internet (and similar networks) and introduce an analytical
approach to finding the critical point. The site connectivity
of the physical structure of the Internet, where each com-
munication node is considered as a site, is power law, to
a good approximation [14]. We introduce a new general
criterion for the percolation critical threshold of randomly
connected networks. Using this criterion, we show analyti-
cally that the Internet undergoes no transition under ran-
dom breakdown of its nodes. In other words, a connected
cluster of sites that spans the Internet survives even for ar-
bitrarily large fractions of crashed sites.

We consider networks whose nodes are connected ran-
domly to each other, so that the probability for any two
nodes to be connected depends solely on their respective
connectivity (the number of connections emanating from
a node). We argue that, for randomly connected networks
with connectivity distribution P(k), the critical breakdown
threshold may be found by the following criterion: if loops

4626 0031-9007/00/85(21)/4626(3)$15.00

of connected nodes may be neglected, the percolation tran-
sition takes place when a node (i), connected to a node ( j)
in the spanning cluster, is also connected to at least one
other node— otherwise the spanning cluster is fragmented.
This may be written as

kili o jy=> kPkiliej)=2, (1
ki
where the angular brackets denote an ensemble average, k;
is the connectivity of node i, and P(k; | i < j) is the con-
ditional probability that node i has connectivity k;, given
that it is connected to node j. But, by Bayes rule for condi-
tional probabilities P(k;|i < j) = P(k;,i « j)/P(i <
J) =Pl = jk)P(k)/P(i — j), where P(ki,i < j) is
the joint probability that node i has connectivity k; and
that it is connected to node j. For randomly connected net-
works (neglecting loops) P(i « j) = (k)/(N — 1) and
P(i < jlk;) = k;/(N — 1), where N is the total number
of nodes in the network. It follows that the criterion (1)
is equivalent to
(k*)
K & 2, 2)
at criticality.
Loops can be ignored below the percolation transition,
k < 2, because the probability of a bond to form a loop
in an s-nodes cluster is proportional to (s/N)? (i.e., pro-
portional to the probability of choosing two sites in that
cluster). The fraction of loops in the system Py is

2
Z S Z s;S S

i

where the sum is taken over all clusters, and s; is the size
of the ith cluster. Thus, the overall fraction of loops in
the system is smaller than S/N, where S is the size of
the largest existing cluster. Below criticality S is smaller
than order N (for ER graphs § is of order InN [11]), so
the fraction of loops becomes negligible in the limit of
N — oo, Similar arguments apply at criticality.
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Consider now a random breakdown of a fraction p of
the nodes. This would generically alter the connectivity
distribution of a node. Consider, indeed, a node with initial
connectivity kg, chosen from an initial distribution P (k).
After the random breakdown the distribution of the new
connectivity of the node becomes (ljf) (1 — p)fp*o=k, and
the new distribution is

Pk)= > P(ko)<ko>(1 - plphh @

k(]:k k
(Quantities after the breakdown are denoted by a prime.)
Using this new distribution, one obtains (k) = (ko) X

(1 = p) and (k) = (k§) (1 = p)* + (ko)p(1 = p), so
the criterion (2) for criticality may be reexpressed as

(ko)
00— p L=2 5
<k0>( pe) tp Q)
or
= pe= ——| ©)
K()—l

where ko = (k3)/{ko) is computed from the original dis-
tribution, before the random breakdown.

Our discussion up to this point is general and applicable
to all randomly connected networks, regardless of the spe-
cific form of the connectivity distribution (and provided
that loops may be neglected). For example, for random
(ER) networks, which possess a Poisson connectivity dis-
tribution, the criterion (2) reduces to a known result [11]
that the transition takes place at (k) = 1. In this case, ran-
dom breakdown does not alter the Poisson character of the
distribution, but merely shifts its mean. Thus, the new
system is again an ER network, but with new effective pa-
rameters: kepg = k(1 — p), Negg = N(1 — p). Inthe case
of Cayley trees, the criteria (2) and (6) also yield the known
exact results [10].

The case of the Internet is thought to be different. It
is widely believed that, to a good approximation, the con-
nectivity distribution of the Internet nodes follows a power
law [14]:

P(k) = ck™“, k=mm+1,....K, @)
where a = 5/2, ¢ is an appropriate normalization con-
stant, and m is the smallest possible connectivity. In a fi-
nite network, the largest connectivity, K, can be estimated
from

* 1
fK P(k)dk N ®)
yielding K = mN /te=1) " (For the Internet, m = 1 and
K =~ N?/3)) For the sake of generality, below we consider
a range of variables, « = 1 and 1 = m < K. The key
parameter, according to (6), is the ratio of second to first
moment, «(, which we compute by approximating the dis-
tribution (7) to a continuum (this approximation becomes
exact for | < m < K, and it preserves the essential fea-

tures of the transition even for small m):
2—a\K¥Y —mPe
Ko = (3 _ a) KZ*a — m2*0{ . (9)
When K >> m, this may be approximated as
m ifa >3;

Ko—»‘2_ “‘ X | ma2Ke if2 < o < 3:

3-a K, ifl<a<?2.
(10)

We see that for @« > 3 the ratio k¢ is finite and there

is a percolation transition at 1 — p. = (Z—:gm -1
for p > p. the spanning cluster is fragmented and the
network is destroyed. However, for @ << 3 the ratio «
diverges with K and so p. — 1 when K — ®© (or N — ).
The percolation transition does not take place: a spanning
cluster exists for arbitrarily large fractions of breakdown,
p < 1. In finite systems a transition is always observed,
though for a < 3 the transition threshold is exceedingly
high. For the case of the Internet (o = 5/2), we have
ko =~ K'/2 = N'/3. Considering the enormous size of the
Internet, N > 10°, one needs to destroy over 99% of the
nodes before the spanning cluster collapses.

The transition is illustrated by the computer simulation
results shown in Fig. 1, where we plot the fraction of nodes
which remain in the spanning cluster, Ps(p)/Px(0), as a
function of the fraction of random breakdown, p, for net-
works with the distribution (7). For « = 3.5, the tran-
sition is clearly visible: beyond p. = 0.5 the spanning
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FIG. 1. Percolation transition for networks with power-law
connectivity distribution. Plotted is the fraction of nodes that
remain in the spanning cluster after breakdown of a fraction p
of all nodes, P.(p)/P«(0), as a function of p, for « = 3.5
(crosses) and a = 2.5 (other symbols), as obtained from com-
puter simulations of up to N = 10%. In the former case, it
can be seen that for p > p. = 0.5 the spanning cluster dis-
integrates and the network becomes fragmented. However, for
a = 2.5 (the case of the Internet), the spanning cluster persists
up to nearly 100% breakdown. The different curves for K = 25
(circles), 100 (squares), and 400 (triangles) illustrate the finite
size effect: the transition exists only for finite networks, while
the critical threshold p. approaches 100% as the networks grow
in size.
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cluster collapses and Pw(p)/P«(0) is nearly zero. On
the other hand, the plots for & = 2.5 (the case of the
Internet) show that although the spanning cluster is di-
luted as p increases [Pu(p)/P«(0) becomes smaller], it
remains connected even at near 100% breakdown. Data
for several system sizes illustrate the finite-size effect:
the transition occurs at higher values of p the larger the
simulated network. The Internet size is comparable to our
largest simulation, making it remarkably resilient to ran-
dom breakdown.

We have introduced a general criterion for the collapse
of randomly connected networks under random removal
of their nodes. This criterion, when applied to the Inter-
net, shows that the Internet is resilient to random break-
down of its nodes: a cluster of interconnected sites which
spans the whole Internet becomes more dilute with increas-
ing breakdowns, but it remains essentially connected even
for nearly 100% breakdown. The same is true for other
networks whose connectivity distribution is approximately
described by a power law, as in Eq. (7), as long as ¢ < 3.

We thank the National Science Foundation for support,
under Grant No. PHY-9820569 (D.b.-A.).

Note added.— After completing this manuscript we
learned that Egs. (1) and (2) have been derived earlier
using a different approach by Molloy and Reed [15]. We
thank Dr. Mark E.J. Newman for bringing this reference
to our attention.
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