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The actual mechanism of polarization switching in ferroelectrics remains a puzzle for many decades,
since the usually estimated barrier for nucleation and growth is insurmountable (“paradox of the coer-
cive field”). To analyze the mechanisms of the nucleation we consider the exactly solvable case of a
ferroelectric film with a “dead” layer at the interface with electrodes. The classical nucleation is easier
in this case but still impossible, since the calculated barrier is huge. We have found that the interaction
between the nuclei is, however, long range, hence one has to study an ensemble of the nuclei. We show
that there are ensembles of small (embryonic) nuclei that grow without the barrier. We submit that the
interaction between nuclei is the key point for solving the paradox.

PACS numbers: 77.80.Dj, 77.80.Fm, 77.84.–s, 82.60.Nh
The polarization switching in ferroelectrics (FEs) is
most commonly used in applications (capacitors, memory
elements), yet this process remains least understood
in spite of numerous experimental studies. As a rule,
ferroelectrics switch in the field Ec which is some order
of magnitude lower than the so-called “thermodynamic
coercive field” Ec0 [1–5]. The latter is the field at which
homogeneously polarized ferroelectrics lose stability in an
external field applied in the opposite direction to the polar-
ization. The fact that the switching takes place well before
the point of instability is reached means that it proceeds
by inhomogeneous nucleation and growth of domains of
a new phase. But how do the domains nucleate? The
difficulty in answering this question was emphasized by
Landauer in late 1950s [1]. His and later estimates [2,3]
showed that the energy barrier for creating a nucleus with
reversed polarization is practically insurmountable, U� *

103kBT in the field of about 100 kV�cm. This problem,
or a “paradox of a coercive field,” was in fact realized
for domain nucleation in ferromagnets in 1938 [6]. The
experimental coercive field for the bulk magnetic materials
was known to be many times smaller than that suggested
by the micromagnetics theory (“Brown’s paradox”) [7,8].
There were numerous suggestions over the years that
some defects can assist the nucleation and reduce the
coercive field down to experimentally observed values.
The situation in magnetics was summarized by Brown
in 1965 who noted that the idea is plausible but “there
has been no strikingly successful calculation based on a
completely realistic model” [7]. Since then the situation
has apparently remained the same [8].

The goal of this paper is to suggest a possible new
mechanism for the polarization switching in ferroelectric
materials. To this end we consider an exactly solvable
model of a ferroelectric material with an extended inho-
mogeneity of its dielectric response at the ferroelectric-
electrode interface, which is called a “passive” or “dead”
layer (for references, see, e.g., [4,9,10]).
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The main feature of the ferroelectric film with the dead
layer is that the film exists in a polydomain state at any
thickness of the dead layer [9]. The metastable mono-
domain state in this system, which can be produced by
cooling in the field, would tend to transform into the equi-
librium polydomain state when the field is turned off. We
will analyze this transformation below. The transformation
is favored by the fact that the polydomain state reduces
the energy of the depolarizing field in spite of increased
surface energy of the domain walls. This is contrary to
the usual notion that the depolarizing field hinders the
nucleation [1].

We shall first consider the classical nucleation of the
individual domains. The nuclei will be assumed below to
have a form of stripes or cylinders, with the domain walls
perpendicular to the plane of the film (c domains), which is
a reasonable approximation. We shall evaluate the barrier
for their nucleation and show that for the individual nucleus
it is practically insurmountable, although the dead layer
helps to reduce it. We then abandon the classical approach
and study the interaction between nuclei and find that it is
long range.

The idea is that when an individual nucleus cannot grow
the ensemble of nuclei may be able to. As an example of
such an ensemble we consider a periodic array of nuclei
and show that it indeed provides a path to the equilibrium
state. We shall show that there is already no energy barrier
for its growth when the nuclei become larger than the thick-
ness of the domain wall W . After this “embryonic” state
has been passed the free energy of the system decreases
monotonously as the nuclei grow. Obviously, the energy of
embryonic nuclei is much smaller than the critical energy
of Landauer’s nucleus [1]. This is simply related to the fact
that the size of the critical Landauer needlelike nucleus is
large, e.g., the radius of its base is rLc � WEc0�Eext ¿ W ,
where Eext �øEc0� is the external field, and therefore its
energy U�

L is huge. In the present case of the dead layer,
Eext should be replaced by the (small) depolarizing field
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in ferroelectrics, and the critical radius of Landauer’s nu-
cleus remains ¿W . Since for the collective nucleation
rcollc � W ø rLc , the incurred energy barrier for a nuclei
to grow beyond the embryonic state U�

coll, if any, should
be much smaller than the standard barrier U�

L for indi-
vidual nuclei. The equilibrium density of the embryos is
large (see below) and the nucleation of the macroscopic do-
main (and the coercive field) would be determined by the
waiting time for optimal fluctuation and its dependence on
the electric field for an ensemble which can grow without,
or almost without, the barrier.

We shall consider first the problem of the barrier for
single stripe and then the problem of cylindrical domains,
which appear to be insurmountable. We establish, how-
ever, that the interaction between the nuclei is long range.
We then turn to the exactly solvable case of an ensemble
of stripe domains and show that the barrier for nucleation
is actually already zero when the nuclei are at the embry-
onic stage.

The geometry of the present problem for ferroelectrics
with a dead layer is illustrated in Fig. 1. For short-circuited
electrodes (zero bias voltage) the free energy of the system
is F̃ � F0 1 Ues, where the electrostatic energy Ues is [9]

Ues �
1
2

Z
FE

dAsw , (1)

where s is the bound charge due to the spontaneous po-
larization only, w is the electrostatic potential, while F0
includes the surface energy of the domain walls, and the
integration goes over the FE surface. The electrostatic po-
tential w is found from solving the Poisson equation for
assumed domain structure [9]. We obtain, with the use
of the Fourier transformation, the total electrostatic energy
for arbitrary one-dimensional stripe domain structure as

Ustripe
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Z `

2`

dk
k

jskj
2

p
´a´c coth�

q
´a

´c

kl
2 � 1 ´g coth kd

2

,

(2)

where sk �
R`

2` dx exp�2ikx�s�x, z � l�2�, l is the
thickness of the FE film with ´c�a� the dielectric constants
in the c �a� direction, and d is the thickness of the dead
layer (Fig. 1).

We begin with the case of a nucleus with the width a
in the center of the plate with the width R ¿ a. In this
case, sk � 2Ps

k �22 sin ka
2 1 sinkR�. The dependence of

all physical quantities on R disappears in a limit R ! `, as
it should. It is handy to always subtract the (constant) elec-
trostatic energy of the uniformly polarized sample, which
is characterized by the Fourier transform of the bound
charge s̄k � �2Ps�k� sinkR. By using Eq. (3), one then
finds the change of the electrostatic energy due to creation
of a stripe nucleus
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FIG. 1. Free energy density F̃�AP2
s for the growth of the

ensemble of nuclei for different values L�W and the fraction
of volume occupied by the ferroelectric f � l�L (d � L 2 l
is the thickness of the dead layer). Note that there is no bar-
rier for growth of very small nuclei (from d � 1) towards the
domain pattern with equal width d � 0 of the domains of both
phases Ps and 2Ps (Kittel state). The flatness of the free en-
ergy F̃ in the vicinity of the Kittel state demonstrates remarkable
softness of ferroelectrics with the dead layer. The inset shows
the schematics of the growth of the ensemble of nuclei (narrow
domains of the new phase).
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for d , l
p

´c�´a, ´g �
p

´a´c. Note that this is the
change in electrostatic energy with respect to uniformly
polarized sample when the nucleus is present, so it does not
apply to a completely reversed sample. The electrostatic
energy favors the nucleation, since the domains reduce the
energy of stray field. The total energy of the stripe nucleus
per unit length is

F̃stripe�a� � 2lg 1 Ustripe
es 2 2PsEextal , (5)

where g � P2
s D is the surface energy of the domain wall,

with D the temperature dependent characteristic length [9].
We see that the gain in electrostatic energy eventually over-
whelms the surface energy, and there appears an exponen-
tially wide barrier for the nucleus in F̃�a� when Eext � 0.

We shall now consider the case of two nuclei of a new
phase in the form of stripe domains. With the help of
Eq. (2), one can calculate the change of the electrostatic
energy due to formation of two nuclei having the same
width a, with the separation r between their centers. We
find, for the energy of the interaction of two stripe domains
per unit length for r ¿ a,
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U
stripe
int �r� � 2´21

g P2
s a2d2 1

r2
, (6)

which corresponds to long-range dipole-dipole interaction
between two stripes [11]. This observation indicates that
the interactions in a system with an ensemble of nuclei
would be very important. Note that the interaction of the
stripe nucleus with the edge of the sample Uedge is also
long range, Uedge�x0� � 2´21

g P2
s ad2�x0, and it is repelled

from the edge.
Similar treatment can be repeated for a single and a pair

of cylindrical nuclei. The expression for the electrostatic
energy for a cylindrical nucleus is similar to that for the
stripe case (2):

Ucyl
es � 2

Z `
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dk

jskj
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2

,

(7)

where, for the nucleus with the radius a in the cen-
ter of the slab with the radius R, we obtain sk �
2p

RR
0 dr rJ0�kr�s�r , z � l�2� � �2pPs�k� �RJ1�kR� 2

2aJ1�ka��, while for the uniformly polarized sample
s̄k � �2pPs�k�RJ1�kR�, with Jn�z� the Bessel function.
The integral in expression (7) for the electrostatic energy
of the cylindrical nucleus can be evaluated with the result

Ucyl
es � 28p2´21

g P2
s da2, a & d ,

� 28p´21
g P2

s d2a ln
8a

e1�2d
, a ¿ d .

(8)

The free energy of one cylindrical nucleus is

F̃cyl�a� � 2palg 1 Ucyl
es 2 2pPsEextla

2. (9)

It is obvious from Eqs. (8) and (9) that the gain in the
electrostatic energy eventually overwhelms the growth of
the surface energy of the domain wall with an increase
of the radius a of the nucleus. The critical radius is
exponentially large when Eext � 0; it behaves roughly
as ac � d exp�0.3a2

K�d2�, where aK � �0.3 ˜́Dl�1�2 is the
Kittel period, ˜́ � ´g 1

p
´a´c [9]. The corresponding

barrier height F̃c is very large, F̃c ¿ P2
s d3

at � Eat, where
dat is the characteristic “atomic” length (of the order of the
lattice parameter) and the “atomic” energy Eat amounts to
a few eV. Thus, in this case the barrier is also huge, compa-
rable to the barrier for Landauer’s nucleus, and its growth
is prohibitively expensive.
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The interaction between two cylindrical nuclei can be
estimated for r ¿ a as

U
cyl
int �r� � 16p2´21

g P2
s a4d2 1

r3
. (10)

In this case it appears to also be long range of a dipole-
dipole type [11].

The importance of these interactions lies in their long
range rather than their sign. Therefore, one has to accu-
rately evaluate the total energy for a system of nuclei, since
it does not reduce to a sum of asymptotic interactions (6)
or (10). The long-range interactions give us a clue to the
mechanism of nucleation and growth of a new phase. To
illustrate that it indeed may solve the problem, we shall
consider a system of stripelike domains. The results be-
low demonstrate that the electrostatic energy not only fa-
vors nucleation but eliminates an energy barrier for the
growth of nuclei in an ensemble when their size is larger
than the domain wall width, i.e., the switching proceeds
collectively.

To study the collective nucleation we shall analyze a do-
main structure with stripe domains of opposite polariza-
tion of widths a1 and a2, the period T � a1 1 a2, and the
asymmetry parameter d � a12a2

a11a2
, which measures a net

polarization of the film [9]. For zero external bias volt-
age assumed throughout this paper, d � 0 in the equilib-
rium (polydomain) state, whereas in the monodomain state
d � 1. At d ! 1 the system consists of very narrow do-
mains with the polarization opposite the net polarization
(Fig. 1, inset), i.e., it is a periodic ensemble of nuclei.
The free energy F̃ of this system at zero external bias is
given by
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where Dn �
p

´a´c coth
q

´a

´c

lnl
2 1 ´g coth lnd

2 and ln �
2pn�T [9]. Fortunately, this free energy can be found ana-
lytically in the asymptotic case of a narrow dead layer
�d ø l� and a correspondingly wide period of the domain
structure, T ¿ d, when ´g �

p
´a´c. We note that in this

case Dn � ´g�1 1 cothlnd
2 � and the summation in (11)

can be performed to yield
F̃
AP2

s
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1

2Dl
T

1
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∑
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1
4
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∏
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where b � 4pd�T ø 1, and Lin�z� �
P`

k�1 zk�kn. For the case of an ensemble of narrow domains, d 	 1, the free
energy can be found from the known asymptotic behavior of the Lin�z� function [12], yielding an approximate expression
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F̃
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s
�
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Now everything depends on how the free energy F̃ be-
haves as a function of d when the nuclei grow, i.e., when
d reduces from unity towards zero. One can easily see that
at x � 1 2 d ø 1 the free energy F̃�AP2

s is given, with
respect to a constant, by the function

f�x� � 2
4pdx

´c�d�l� 1 ´g
1

T
´g

x2 ln
e3b2

p2x2 , (14)

where f�0� � 0. This function does not have a barrier
as a function of x when T is kept constant. Indeed, the
second term in (14) has an exponentially small maximum
�� T´21

g x2
0� at x0 � 4ed�T ø 1. It is, however, sup-

pressed by the first term, which corresponds to the energy
of homogeneous field created by the net polarization and is
linear in x. As a result, there appears to be no barrier for
the growth of nuclei. Note that we have actually restricted
the system’s path for nucleation by constraining the do-
main pattern to a fixed period. Even under this constraint
the growth proceeds without the energy barrier, and this
would be even more so if we were to lift the constraint and
allow the system to follow an optimal path to equilibrium.
This behavior does not depend on the approximation we
made for evaluating the free energy; the exact calculation
of the free energy (11) for all d shows that the collective
growth of nuclei that we just described proceeds without
the barrier (Fig. 1). As mentioned above, the smallest size
of nuclei where the present analysis applies is of the order
of the domain wall width W and the barrier for the nu-
cleation of such small embryonic nuclei is expected to be
zero or much smaller than the usual estimates [1–3] for
individual nucleation.

For nucleation to proceed by the present mechanism the
only condition is the presence of extended dielectric inho-
mogeneity in a sample. The external field does promote
growth of the nuclei, but the nucleation in the present sys-
tem occurs even without it. The likely requirement is that
the lateral extent of this inhomogeneity should be much
larger than the period of the equilibrium domain (Kittel)
structure aK . One can estimate the rate of embryo nuclea-
tion in 1 cm3 as ��1�W3tph� exp�2Uem�kT �, where tph
is the characteristic (optical phonon) time, and the atomic
estimate of the energy of the embryo is Uem � gW2 �
Eat

p
Tc�Tat � �2 3� 3 103 K [13], with the characteris-

tic atomic temperature Tat � 104 K. Taking a conservative
estimate of the embryo lifetime as �10tph, one finds the
equilibrium density of the embryos �1017 cm23. At such
high densities the embryos should “feel” each other’s field,
and favorable ensembles should appear within a reason-
able time, unlike in the case of Landauer’s nucleus where
the expectation time greatly exceeds the lifetime of the
universe.

In conclusion, we have suggested a possible way to solve
the “paradox of the coercive field” by demonstrating a col-
lective mode of domain growth past the embryonic stage
with sizes about the domain wall thickness W , which pro-
ceeds without energy barrier. The origin of this coopera-
tive phenomenon is a long-range interaction of electrostatic
origin between the nuclei. The possible screening by free
charges in ferroelectrics does not seem to be important,
since the conductivity of ferroelectrics is usually too low
to have any effect [1]. As a corollary, we note that the
Kolmogorov-Avrami (KA) model [14] is inapplicable to
the growth of domains in ferroelectrics, since the essential
long-range interaction between nuclei is completely ne-
glected in this approach (note that KA, additionally, fully
bypasses the question of how the domains were nucleated
in the first place). The present results are general and im-
ply that, in ferroelastic materials and possibly also mag-
netic materials, the nucleation would be facilitated by the
long-range interaction between nuclei of a new phase. This
could alleviate Brown’s paradox of the coercive field in re-
lation to switching in bulk ferromagnets.
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