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Measuring Information Transfer
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An information theoretic measure is derived that quantifies the statistical coherence between systems
evolving in time. The standard time delayed mutual information fails to distinguish information that
is actually exchanged from shared information due to common history and input signals. In our new
approach, these influences are excluded by appropriate conditioning of transition probabilities. The
resulting transfer entropy is able to distinguish effectively driving and responding elements and to detect
asymmetry in the interaction of subsystems.
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The time evolution of a system may be called irregular
if it generates information at a nonzero rate. For stochas-
tic or deterministically chaotic systems, this is quantified
by the entropy. For a system consisting of more than one
component, important information on its structure can be
obtained by measuring to which extent the individual com-
ponents contribute to information production and at what
rate they exchange information among each other. This
paper proposes a method to answer the latter question on
the basis of time series observations.

Many authors have used mutual information [1] to quan-
tify the overlap of the information content of two (sub)sys-
tems. Unfortunately, mutual information neither contains
dynamical nor directional information. Introducing a time
delay in one of the observations is an important, if some-
what arbitrary, improvement in this respect, but still does
not explicitly distinguish information that is actually ex-
changed from that due to the response to a common input
signal or history.

The purpose of this paper is to motivate and derive an al-
ternative information theoretic measure, to be called trans-
fer entropy, that shares some of the desired properties of
mutual information but takes the dynamics of information
transport into account. With minimal assumptions about
the dynamics of the system and the nature of their coupling
one will be able to quantify the exchange of information
between two systems, separately for both directions, and,
if desired, conditional to common input signals.

This work augments recent studies [2] of the nonlinear
coherence of signals, most notably in physiological sys-
tems. While these measures are often very powerful for a
specific set of applications, it is also important to aim at
an understanding of the underlying theoretical concepts. In
the generic case that neither one of the systems, nor their
coupling, may be assumed to be deterministic, information
theory seems to be an appropriate starting point.

Let us briefly recall the most basic concepts of infor-
mation theory [3]. The average number of bits needed to
optimally encode independent draws of the discrete vari-
able I following a probability distribution p�i� is given by
the Shannon entropy [1] HI � 2

P
i p�i� log2p�i�, where

the sum extends over all states i the process can assume.
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The base of the logarithm determines only the units used
for measuring information and will be dropped henceforth.

In order to construct an optimal encoding that uses just
as many bits as given by the entropy, it is necessary to
know the probability distribution p�i�. The excess num-
ber of bits that will be coded if a different distribution
q�i� is used is given by the Kullback entropy [4] KI �P

i p�i� logp�i��q�i�. We will later also need the Kullback
entropy for conditional probabilities p�i j j�. For a single
state j we have Kj �

P
i p�i j j� logp�i j j��q�i j j�. Sum-

mation over j with respect to p� j� yields

KI j J �
X
i,j

p�i, j� log
p�i j j�
q�i j j�

. (1)

The mutual information of two processes I and J
with joint probability pIJ�i, j� can be seen as the excess
amount of code produced by erroneously assuming that
the two systems are independent, i.e., using qIJ�i, j� �
pI�i�pJ � j� instead of pIJ�i, j�. The corresponding Kull-
back entropy is

MIJ �
X

p�i, j� log
p�i, j�

p�i�p� j�
, (2)

which is the well known formula for the mutual informa-
tion. Here and in the following, we omitted the summation
index and the subscript of the probabilities specifying the
process. This derivation shows that mutual information is
a natural way to quantify the deviation from independence
of two processes. We have MIJ � HI 1 HJ 2 HIJ $ 0.
Note that MIJ is symmetric under the exchange of I and J
and therefore does not contain any directional sense.

A related, nonsymmetric quantity is the conditional en-
tropy HI j J � 2

P
p�i, j� logp�i j j� � HIJ 2 HJ . How-

ever, since HI j J 2 HJ j I � HI 2 HJ , it is nonsymmetric
only due to the different individual entropies and not due
to information flow. Mutual information can be given a di-
rectional sense in a somewhat ad hoc way by introducing
a time lag in either one of the variables and compute, e.g.,

MIJ�t� �
X

p�in, jn2t� log
p�in, jn2t�
p�i�p� j�

.
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As we will see below, considering the two systems at dif-
ferent times occurs naturally as soon as transition proba-
bilities are introduced.

One can incorporate dynamical structure by studying
transition probabilities rather than static probabilities.
Consider a system that may be approximated by a sta-
tionary Markov process of order k, that is, the conditional
probability to find I in state in11 at time n 1 1 is in-
dependent of the state in2k : p�in11 j in, . . . , in2k11� �
p�in11 j in, . . . , in2k11, in2k�. Henceforth we will use the
shorthand notation i�k�

n � �in, . . . , in2k11� for words of
length k.

The average number of bits needed to encode one addi-
tional state of the system if all previous states are known
is given by the entropy rate

hI � 2
X

p�in11, i�k�
n � logp�in11 j i

�k�
n � . (3)

Since p�in11 j i�k�
n � � p�i�k11�

n11 ��p�i�k�
n �, this is just the dif-

ference between the Shannon entropies of the processes
given by k 1 1 and k dimensional delay vectors [5] con-
structed from I: hI � HI �k11� 2 HI �k� .

If I is obtained by coarse graining a continuous sys-
tem X at resolution r , the entropy HX�r� and entropy rate
hX�r� will depend on the partitioning and in general di-
verge like 2 logr when r ! 0. However, for the special
case of a deterministic dynamical system, limr!0hX�r� �
hKS may exist and is then called the Kolmogorov-Sinai en-
tropy [6]. (For non-Markov systems, also the limit k ! `

needs to be taken.) Confusingly, the opposite is true for the
mutual information: For generic noisy interdependence,
limr!0MXY �r� is finite and independent of the partition,
but for deterministically coupled processes, MXY �r� will
diverge as r ! 0.

For the study of the dynamics of shared information be-
tween processes it is desirable to generalize the entropy
rate, rather than Shannon entropy, to more than one sys-
tem, since the dynamics of the processes is contained in
the transition probabilities. The most straightforward way
to construct a mutual information rate by generalizing hI

to two processes �I, J� is again by measuring the deviation
from independence. The corresponding Kullback entropy
is still symmetric under the exchange of I and J. It is
therefore preferable to measuring the deviation from the
generalized Markov property,

p�in11 j i
�k�
n � � p�in11 j i

�k�
n , j�l�

n � .

In the absence of information flow from J to I , the state
of J has no influence on the transition probabilities on
system I . The incorrectness of this assumption can again
be quantified by a Kullback entropy (1) by which we define
the transfer entropy:

TJ!I �
X

p�in11, i�k�
n , j�l�

n � log
p�in11 j i

�k�
n , j

�l�
n �

p�in11 j i
�k�
n �

. (4)

This is the central concept of this paper. The most natu-
ral choices for l are l � k or l � 1. Usually, the latter is
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preferable for computational reasons. TJ!I is now explic-
itly nonsymmetric since it measures the degree of depen-
dence of I on J and not vice versa. Similar quantities have
been discussed outside a dynamical framework; see, e.g.,
the section on conditional transinformation in Ref. [7], or
the discussion in Ref. [8].

For coarse grained states �I , J� of continuous systems
�X, Y �, the limit limr!0TY!X�r� is finite and indepen-
dent of the partition, except for the case of deterministic
coupling, when TY!X�r� diverges as r ! 0. In this re-
spect, transfer entropy behaves like mutual information. If
computationally feasible, the influence of a known com-
mon driving force Z may be excluded by conditioning the
probabilities under the logarithm to zn as well.

For practical applications, the limit r ! 0 is not obtain-
able and has to be replaced appropriately. Either one can
study transfer entropy as a function of the resolution or one
can fix a resolution for the scope of a study. Furthermore,
there are several methods of coarse graining. A partition
consisting of a fixed mesh of boxes is suitable only when
data can be produced with little effort.

For time series applications, an alternative implementa-
tion using generalized correlation integrals is preferable.
Mutual information and redundancies have been general-
ized for their estimation by order q correlation integrals
[9]. It is possible to follow the same arguments in gen-
eralizing transfer entropy. However, for the computation-
ally most attractive case q � 2, we would have to give
up positivity of TI!J . Instead, we propose an implemen-
tation of the definition (4) where the probability measure
p�in11, i�k�

n , j�l�
n � is realized by a sum over all available real-

izations of �xn11, x�k�
n , y�l�

n � in a time series. The transition
probabilities are expressed by joint probabilities and then
obtained by kernel estimation, e.g.,

p̂r �xn11, xn, yn� �
1
N

X
n0

Q

0
B@

0
B@

xn11 2 xn011
xn 2 xn0

yn 2 yn0

1
CA 2 r

1
CA .

We use the step kernel Q�x . 0� � 1; Q�x # 0� � 0.
The norm j ? j can be simply the maximum distance but
other norms and kernels can be considered. In particular,
different overall scales of X and Y can be accounted for by
using appropriate weights. Similar to standard dimension
and entropy calculations, fast neighbor search strategies are
advisable for all but the smallest data sets. Dynamically
correlated pairs should be excluded as usual. Since these
technical issues are the same as in many nonlinear time
series methods, the reader is referred to the discussion in
the literature [5].

In order to demonstrate the use of transfer entropy, let
us study three examples, two spatiotemporal systems and
a bivariate physiological time series. In a one dimensional
lattice of unidirectionally coupled maps

xm
n11 � f���exm21

n 1 �1 2 e�xm
n ��� , (5)
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FIG. 1. Transfer entropy TIm21!Im as a function of the cou-
pling strength e in a tent map lattice (binary partition). Error
bars: error of the mean of 10 runs of 100 000 iterates. Line:
theoretical curve a2e2� ln�2� with fitted a � 0.77.

information can be transported only in the direction of in-
creasing m. One of the simplest cases is given by the
tent map, f�x , 0.5� � 2x; f�x $ 0.5� � 2 2 2x. Let
us study coarse grained states Im with im

n defined by a par-
tition at x0 � 0.5. At zero coupling, all static and transfer
probabilities are equal to 1�2, M�t� � 0 for all values of t,
and also TIm21!Im � TIm!Im21 � 0. For nonzero coupling,
we still have TIm!Im21 � 0, but TIm21!Im becomes positive.
For small coupling, it can be assumed that the invariant
density at a single site is essentially unchanged whence
the transition probabilities p�Im

n11 j Im
n , Im21

n � are changed
by an amount proportional to e. In particular, p�0 j 0, 0�,
p�0 j 1, 1�, p�1 j 0, 1�, and p�1 j 1, 0� are increased by a fac-
tor of 1 1 ae with a � O�1�. All others are decreased
by that amount. Evaluating (4) in lowest order of e with
k � l � 1, we obtain TIm21!Im � a2e2� ln�2� 1 O�e4�.
For this particular case, the changes in p�im

n11, im21
n � ex-

actly cancel out and the mutual information is zero. Fig-
ure 1 shows a numerical verification of these results for a
spatially periodic lattice of 100 maps. Averages of 10 runs
of 105 iterates after 105 transients are shown. The transfer
entropy TIm!Im21 and both directions of M�t � 1� were
found to be consistent with zero and are therefore not
shown.

The situation is more complicated for the Ulam map
f�x� � 2 2 x2 and nonsmall coupling. For each coupling,
a bivariate time series was generated using a lattice of
100 points (random initial conditions) and recording
10 000 iterates of x1

n and x2
n after 105 steps of transients.

Correlation sums at r � 0.2 were used to compute
mutual information in both directions, MX1,X2�t � 1� and
MX2,X1�t � 1�, as well as transfer entropies TX1!X2 and
TX2!X1 with k � l � 1. Neighbors closer in time than
100 iterates were excluded from the kernel estimation.

Figure 2 shows M and T as functions of the coupling
strength. Both M and T are able to detect the anisotropy
since the information is consistently larger in the positive
direction. The lattice undergoes a number of bifurcations
when the coupling is changed. Around e � 0.18, the
asymptotic state is of temporal and spatial period two. For
FIG. 2. Transfer entropies TX1!X2 and TX2!X1 (solid lines)
and time delayed mutual information MX1,X2 �t � 1� and
MX2,X1 �t � 1� (dashed lines) as functions of the coupling
strength e for a unidirectionally coupled Ulam lattice. For both
quantities, the upper line denotes the direction Xm21 ! Xm

while the lower line shows Xm11 ! Xm. Although the lattice
undergoes a sequence of bifurcations, the transfer entropy T
clearly reflects the unidirectional character of the coupling.
It also consistently outperforms the time delayed mutual
information in this respect. See text for further details.

this case, the mutual information is found to be 1 bit. This
is correct although information is neither produced nor
exchanged and reflects the static correlation between the
sites. The transfer entropy finds a zero rate of information
transport, as desired. Around this periodic window, the
mutual information is nonzero in both directions and the
signature of the unidirectional coupling is less pronounced.
Around e � 0.82, the lattice settles to a (spatially in-
homogeneous) fixed point state. Here both measures
correctly show zero information transfer. The most
important finding, however, is that the transfer entropy for
the negative direction remains consistent with zero for all
couplings, reflecting the causality in the system.

As a last example, take a bivariate time series (see
Fig. 3) of the breath rate and instantaneous heart
rate of a sleeping human suffering from sleep apnea
(samples 2350–3550 of data set B of the Santa Fe
Institute time series contest held in 1991 [10]). Figure 4

FIG. 3. Bivariate time series of the breath rate (upper) and
instantaneous heart rate (lower) of a sleeping human. The data
is sampled at 2 Hz. Both traces have been normalized to zero
mean and unit variance.
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FIG. 4. Transfer entropies T �heart ! breath� (solid line),
T�breath ! heart� (dotted line), and time delayed mutual
information M�t � 0.5 s� (directions indistinguishable, dashed
line) for the physiological time series shown in Fig. 3.

shows that time delayed mutual information is almost
symmetric between both series. The transfer entropy also
finds information transport in both directions but indicates
a stronger flow of information from the heart rate to the
breath rate than vice versa over a significant range of
length scales r . Note that for small r the curves deflect
down to zero due to the finite sample size.

In contrast to the previous examples, the two channels
studied here differ in their individual information contents.
In such a situation, unless we find zero information trans-
fer in one of the directions, too rash conclusions about
the nature of the interaction have to be avoided. Differ-
ent rates of information production and transport between
length scales will naturally cause some asymmetry in the
rate of information transfer, as measured by T . Reducing
the analysis to the identification of a “drive” and a “re-
sponse” may not be useful and could even be misleading.
In this particular data set, the dominant direction of infor-
mation flow from the heart to the breath signal is consis-
tent with the observation that the patient breathes in bursts
which seem to occur whenever the heart rate crosses some
threshold. Finally, note that the findings could also be ex-
plained with a coupling of both signals to a common ex-
ternal trigger.

In conclusion, the new transfer entropy is able to detect
the directed exchange of information between two systems.
Unlike mutual information, it is designed to ignore static
correlations due to the common history or common input
signals. Most prominent applications include multivariate
analysis of time series and the study of spatially extended
systems.

Several authors [11] have proposed to use time delayed
mutual information M�Dl, t� as a function of spatial dis-
tance Dl and temporal delay t to define a velocity of in-
formation transport in spatiotemporal systems. Often, one
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finds that M�Dl, t� for fixed Di reaches a local maximum
at some lag t�. Hence a velocity can be defined by the ratio
Di�t�, in particular if that ratio is fairly constant over the
resolvable range of values for Di. This reasoning has been
challenged [12] by giving an example where the above in-
terpretation implies superluminal communication. In fact,
much of the common information is due to the common
history that allows the lattice to partially synchronize. Pre-
liminary results indicate that appropriate conditioning for
the common history by replacing time delayed mutual in-
formation by a variant of Eq. (4) resolves this apparent
paradox. However, conditioning with respect to a large
number of variables poses immense numerical problems
whence this study will be concluded at a later time.
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