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A quantum mean field theory of the pyrochlore lattice is presented. The starting point is not the
individual magnetic ions, as in the usual Curie-Weiss mean field theory, but a set of interacting corner-
sharing tetrahedra. We check the consistency of the model against magnetic susceptibility data and find
good agreement between the theoretical predictions and the experimental data. Implications of the model
and future extensions are also discussed.

PACS numbers: 75.10.Jm, 75.30.Cr, 75.40.Cx
Introduction.— Geometrically frustrated antiferromag-
nets with a pyrochlore lattice exhibit a rich phenomenol-
ogy which has received a vast amount of attention during
the last decade [1,2]. In the pyrochlore lattice, the mag-
netic ions occupy the corners of a 3D arrangement of
corner-sharing tetrahedra (an illustration of the pyrochlore
lattice can be found in [2]). Materials that crystallize in this
structure exhibit anomalous magnetic properties [3–5]:
The magnetic susceptibility follows the Curie-Weiss law
down to temperatures well below the Curie temperature.
Some of them exhibit long range order at very low tem-
peratures, whereas others behave as spin glasses, even
though the lattice is almost perfect. There are other com-
pounds of this class that show short range order and are
regarded as spin liquids.

In spite of the intensive research in these systems during
the last decade, there is still a lack of critical comparison
between theory and experiment. Even though there are a
number of models and classical Monte Carlo simulations
[6] which qualitatively describe some of the experimen-
tal results, some of the features found in the experimental
data cannot be explained by means of a classical theory,
as are, for example, the maxima appearing in the magnetic
susceptibility at very low temperatures, which a classical
model cannot explain. However, there have been few at-
tempts to investigate these systems quantum mechanically.
Harris and co-workers have studied the quantum s �

1
2

Heisenberg antiferromagnet [7]. Canals and Lacroix [8]
have applied a perturbative approach to the density opera-
tor of a small cluster and found that the ground state is a
quantum spin liquid.

In this work, we undertake the task of making such a
quantum theory of the pyrochlore lattice in the framework
of the mean field (MF) theory. The goal of this work is
twofold: On one hand, we introduce a fully quantum me-
chanical MF theory of the Heisenberg antiferromagnet in
the pyrochlore lattice for arbitrary spin s. On the other
hand, we try to make this model as simple as possible, in
order to make it easy to compare it with experimental data
and extract information about the various interactions that
play a role in these systems. Only the main results of the
0031-9007�00�85(21)�4598(4)$15.00
model will be presented here, as a more detailed presenta-
tion of the model will be published elsewhere. The starting
point to build this MF is not a set of interacting spins, but
a set of coupled tetrahedra, which goes back to the pair
approximations of Oguchi and Kastelejein and van Kra-
nendonk [9]. The magnetic susceptibility of this system
is calculated for both the interacting and noninteracting
tetrahedra cases. We find that the independent tetrahedra
model fails to explain the behavior of experimental data,
and we justify this fact, whereas the MF theory describes
quasiquantitatively the experimental data for a variety of
systems.

The model.—The Hamiltonian of the quantum Heisen-
berg model with nearest neighbors in the presence of an
applied magnetic field H0 in the pyrochlore lattice can be
put as [10]

H � 22J1

X

�i,j�
�si ? �sj 2 H0

X

i

szi , (1)

where J1 is the negative exchange coupling and �si is the
spin operator of the ith magnetic ion. The Zeeman term
has been quoted in units of the Bohr magneton times the
gyromagnetic ratio, so H0 has dimensions of energy.

We start by considering the magnetic susceptibility of
one tetrahedron. In this simple case, the Hamiltonian can
be easily diagonalized in terms of the total spin represen-
tation of the tetrahedron, and the magnetization can be ex-
pressed as

M �

P
S g�S�Sej1S�S11�FS�x�BS�x�P

S g�S�ej1S�S11�FS�x�
, (2)

where FS�x� � sinh� 2S11
2S x��sinh� x

2S � and BS�x� is the
Brillouin function [10]. S represents the modulus of
the total spin operator of the tetrahedron; g�S� is the
degeneracy associated with the total spin value S, which
can be calculated by using Van Vleck’s formula [11], and
is listed in Table I for the values of the individual spins
s considered in this work; x �

H0S
T , and j1 �

J1

T (the
energies are quoted in units of the Boltzmann constant, so
they have units of absolute temperature).
© 2000 The American Physical Society
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TABLE I. Values of g�S� for the individual spins, s, considered in this work.

S
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

s � 1 3 6 6 3 1
s �

3
2 4 9 11 10 6 3 1

s �
5
2 6 15 21 24 21 15 10 6 3 1

s �
7
2

8 21 31 38 42 43 41 36 28 21 15 10 6 3 1
In the limit x ø 1, we can define the magnetic suscep-
tibility per ion in the tetrahedron as

x̂tet �
M

4H0

�
1

12T

P
S g�S�S�S 1 1� �2S 1 1�ej1S�S11�

P
S g�S� �2S 1 1�ej1S�S11� . (3)

It is interesting to note that for j1 ø 1 the susceptibil-
ity can be identified with the high temperature expansion
of a Curie–Weiss-type law (per ion and in the same units
we are considering in this work), x̂ tet �

s�s11�
3T �1 1

u

T �,
where u � 2s�s 1 1�J1. Therefore, this model repro-
duces the behavior predicted by the Curie law at very high
temperatures. However, the value of the Curie-Weiss tem-
perature in this type of lattice is given by [10]

uCW � 4J1s�s 1 1� � 2u . (4)

The reason for this deviation is, obviously, the fact that we
have not considered the interaction with the neighboring
tetrahedra, which is of the same order of magnitude as the
interactions inside the tetrahedron.

To remedy this situation, we can introduce a tetrahedral
mean field (TMF) theory that takes into account, at least in
an approximate way, the interaction with the neighboring
ions outside the tetrahedron. Each ion in the tetrahedron
interacts with z � 3 external ions, in the nearest neighbor
interaction approximation.

The effect of this interaction with the nearest neighbors
outside the tetrahedron, in the spirit of the MF theory, can
be accounted for by introducing a molecular field propor-
tional to z and the magnetization per ion m � M

4 . The
constant of proportionality can be put without loss of gen-
erality as 2Jeff. In the high temperature limit, the magne-
tization per ion can be put as m � x̂ tet �H0 1 2zJeffm�,
from which we obtain the expression of the susceptibility
in this TMF model,

xTMF �
x̂tet

1 2 2zJeffx̂tet . (5)

The value of the Jeff parameter can be estimated as
follows: in the high temperature limit, xTMF can be put
again as the high temperature expansion of a Curie–Weiss-
type law. By equating this expansion with the real Curie-
Weiss law up to 1

T 2 terms, we reach the condition
u 1 2zJeff
s�s 1 1�

3
� uCW. (6)

Were the interaction with further neighbors negligible with
respect to the first neighbor interactions, relation (4) would
be exact and, therefore, by using the relation between u

and J1 obtained in the noninteracting tetrahedra case, we
would have Jeff � J1, which is completely similar to the
value obtained in the standard MF theory.

Of course, second and further nearest neighbor interac-
tions are always present in real systems. Thus, the value
of uCW obtained from experimental data can contain ad-
ditional contributions coming from next nearest neighbors
and so on. For this reason, relation (4) is only an approxi-
mate one, and so is (6). In order to compare the predic-
tions of the model with experimental measurements, it is
preferable to consider the interaction inside the tetrahe-
dron, J1, and the interaction with nearest neighbors outside
the tetrahedron, Jeff, as adjustable parameters. The differ-
ence between J1 and Jeff provides a way of estimating the
value of additional interactions not explicitly accounted for
in this model. In fact, interactions with further neighbors
can be explicitly accounted for in this model in the follow-
ing way: let us consider the interaction with z0 next near-
est neighbors (nine for the pyrochlore lattice) in the mean
field approximation. In this case, the magnetization per
ion will be given by m � x̂ tet �H0 1 2zJ1m 1 2z0J2m�,
where J2 represents the coupling with next nearest neigh-
bors, and the magnetic susceptibility is given by

xTMF �
x̂tet�J1, T �

1 2 6�J1 1 3J2�x̂ tet�J1, T �
, (7)

where we have made use of the fact that for the pyrochlore
lattice z � 3 and z0 � 9 and that the difference between
J1 and Jeff comes from these additional interactions, that
is, Jeff � J1 1 3J2.

Comparison with experimental data.— In order to test
the validity of the above model, it is important to compare
its predictions with magnetic susceptibility data. We have
selected the following systems whose magnetic ions form a
pyrochlore lattice: ZnCr2O4 [5], Gd2Ti2O7 [4], Y2Mo2O7
[12], and CdFe2O4 [13], where the value of the magnetic
ion spin is s �

3
2 , s �

7
2 , s � 1, and s �

5
2 , respectively.

The temperature dependence of the magnetic suscepti-
bility in these materials can be seen in Fig. 1. All of them
follow a Curie-Weiss law from high temperatures to well
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FIG. 1. Comparison with experimental susceptibility data of
(a) ZnCr2O4, (b) Gd2Ti2O7, (c) Y2Mo2O7 and CdFe2O4. The
open circles represent experimental data (open squares for
CdFe2O4), whereas the solid lines are fits to expression (7).
The dashed lines represent fits to the Curie-Weiss law. The
dash-dotted line in the case of ZnCr2O4 represents the prediction
of the isolated tetrahedra model with the parameters obtained
from the fit to the Curie-Weiss law. All the curves have been
divided by the Curie constant, so the susceptibility has units of
the inverse of the absolute temperature. The data for CdFe2O4
have been rescaled by a factor of 5 for clarity.

below the Curie-Weiss temperature. The predictions of our
TMF theory are also plotted in Fig. 1. The values of J1
and J2, which we obtain by fitting the data points above Tc,
have been quoted in Table II. Here Tc marks the transition
to the low temperature phase, which is either long range
order (LRO) or spin glass (SG). The data for Gd2Ti2O7
are from ac susceptibility measurements. Also, the pre-
dictions of the noninteracting tetrahedra model have been
4600
represented for the case of ZnCr2O4, in order to show the
deviations of the predictions of this model from the experi-
mental data. The case of CdFe2O4 is somewhat special and
will be analyzed below.

As we can see from observation of the figure and the
values collected in Table II, the agreement between theory
and experiment is quite good. In the case of ZnCr2O4, the
agreement is excellent in the entire temperature range. For
the other two systems, there is only qualitative agreement.
Nevertheless, we feel that the agreement between theory
and experiment is good enough to assess the validity of our
model, at least, from a qualitative point of view.

It is important to notice that the values predicted for
J1 are systematically smaller than the values of Jeff �
J1 1 3J2, which are close to the ones obtained from fits to
a Curie-Weiss law, which is consistent with the idea men-
tioned in the previous section about additional interactions
from further neighbors.

An additional prediction of our model is the existence
of a maximum appearing in the x versus T plots. The po-
sition of this maximum, Tm, presented in Table II, can be
calculated only numerically, as its determination involves
solving a transcendental equation. However, it is found
that it follows this empirical law:

Tm � 2
�s 1 1�J1

1.273
. (8)

It is important to notice that the position of the maximum
is determined only by the value of the interaction inside
the tetrahedron. We see that the value of Tm predicted
by the model in the case of ZnCr2O4 is very close to the
experimental value. However, in the case of Gd2Ti2O7 the
predicted maximum occurs at �1�2 of the experimental
value. In the case of Y2Mo2O7, there is no maximum in
the paramagnetic phase as there is a transition to a SG at
around 18 K.

As commented above, the case of CdFe2O4 is special,
because in this material next nearest neighbor interactions
are of the same order of magnitude as the nearest neighbor
ones, but ferromagnetic, which leads to an experimental
value of the Curie-Weiss temperature equal to zero. How-
ever, the present model is able to describe even this limit-
ing case, and the values of the various couplings obtained
from the fit are very reasonable. Moreover, the position
of the maximum predicted by the model is in very good
agreement with the experimental value, and inside the ex-
perimental uncertainty.

Conclusions.— In this work we have analyzed the tem-
perature dependence of the magnetic susceptibility data of
an arrangement of magnetic ions of spin s in a pyrochlore
lattice. To do this, we have developed a tetrahedral mean
field theory taking as a starting point the exact suscepti-
bility of a set of four interacting spins in the corners of
an isolated tetrahedron. For the sake of completeness, we
have also briefly analyzed the susceptibility predicted by a
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TABLE II. Parameters of the TMF theory. All of them are quoted in K.

Material uCW JCW a Texp
m

b Tc J1 J2 T fit
m

c

ZnCr2O4 2388 225.9 37.4 12 (LRO) 219.2 22.3 38.0
Gd2Ti2O7 221 20.33 2.0 0.97 (LRO) 20.20 20.05 0.7
Y2Mo2O7 261 27.625 · · · 18 (SG) 27.13 20.02 11.2
CdFe2O4 0 0 17.0 10 (LRO) 25.23 4.1 14.4

aValue of the antiferromagnetic exchange coupling obtained from the equation uCW �
4JCWs�s 1 1�.
bExperimental value of the position of the maximum.
cCalculated from Eq. (8).
noninteracting tetrahedra model. We reach the conclusion
that, even though the noninteracting model provides an ad-
equate description of the high temperature region, it fails a
quantitatively describe the temperature dependence of the
susceptibility at lower temperatures, as the 1

T 2 term in this
model is 1

2 of the actual value. However, once we incorpo-
rate the interactions with the rest of the nearest neighbors
in terms of a mean field, we find quite good agreement
between the theoretical predictions and experimental data.
Especially important is the prediction of the appearance
of a maximum in x versus T . The position of the maxi-
mum has been calculated, and a reasonable agreement is
found. At this point, it is very difficult to say if the de-
viations are an intrinsic problem of the model. To clarify
this point, more good quality experimental data in a vari-
ety of systems whose susceptibility maxima lie well above
Tc would be necessary.

One feature of this model is that it can be very easily
generalized to include additional interactions coming
from further neighbors and more exotic systems where,
for example, the interaction with the nearest neighbors is
antiferromagnetic and is ferromagnetic with next nearest
neighbors, as we have done for the case of CdFe2O4,
finding very good agreement between theory and
experiment.

Of course, this work is not conclusive, in the sense
that it does not solve the problem of the anomalous
behaviors found in these types of systems. It does not
provide an explanation of why some of these materials
exhibit a long range order state at very low temperatures,
whereas others are in a spin liquid state. Moreover,
nothing has been said about the disorder always present
in any material, which has been suggested to be related
to the appearance of behaviors characteristic of spin
glasses. These subjects are out of the scope of this
paper, though they should constitute the direction of
future work.

In any case, we think that the present model provides a
good starting point for such investigations.
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