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We study the quantum measurement process by a single-electron transistor or a quantum point contact
coupled to a quantum bit. We find a unified description of the statistics of the monitored quantity, the
current, in the regime of strong measurement and derive the probability distributions for the current and
charge in different stages of the process. In the parameter regime of the strong measurement the current
develops a telegraph-noise behavior which can be detected in the noise spectrum. This description applies
for a wide class of quantum measurements.
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Introduction.—The long-standing interest in funda-
mental questions of the quantum measurement received
new impetus by the experimental progress in mesoscopic
physics and growing activities in quantum state engi-
neering. The basic idea is to use as a meter a device,
able to carry a macroscopic current, which is coupled to
the quantum system such that the conductance depends
on the quantum state. By monitoring the current one
performs a quantum measurement, which, in turn, causes
a dephasing of the quantum system [1–3]. The dephasing
was demonstrated in the experiments of Buks et al. [4]
where a quantum dot was embedded in one arm of a
“which-path” interferometer. The current through a
quantum point contact (QPC) in close proximity to the
dot suppresses the interference. However, since passing
electrons interact with the current only for a short dwell
time in the dot, the meter fails to distinguish between two
possible paths of individual electrons; only a reduction of
interference has been observed. This situation is referred
to as a weak measurement.

For a strong quantum measurement a prolonged cou-
pling of a quantum system to a meter is needed. Then
a sufficiently long observation may provide information
about the quantum state. This situation is realized when a
single-electron transistor (SET) is coupled to a Josephson
junction single-charge box, which for suitable parameters
serves as a quantum bit (qubit) [5,6]. The analysis of the
time evolution of the density matrix of the coupled system
demonstrates the mutual influence between qubit and me-
ter, including dephasing effects [7].

A quantum measurement fixes a qubit’s basis, in which
it is performed. This “pointer” basis emerges as a result
of interaction between qubit and detector. Furthermore,
it turns out that the measurement process is characterized
by three time scales. On the shortest, the dephasing time
tw , the phase coherence between the pointer states j0�
and j1� is lost, while their occupations remain unchanged.
Later, after the second time scale tmeas information about
the qubit’s state can be extracted by reading out the current
in the SET [7] as discussed below. Our analysis shows that,
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in accordance with the laws of quantum mechanics, the
readout gives one of two outcomes, 0 or 1, with probabili-
ties jaj2 and jbj2, determined by the initial state aj0� 1

bj1�. It leaves the qubit in the corresponding pointer
state, j0� or j1�. Finally, detector-induced transitions mix
pointer states, changing their occupations on a time scale
tmix . tw and erasing information about the initial state
of the qubit. The relaxation times tmix and tw resemble
the times T1 and T2 in NMR systems, respectively.

To describe the readout procedure, we consider the
probability distribution P�m, t� that m electrons have
tunneled through the SET by time t. At times t . tmeas
the distribution has two peaks with weights jaj2 and
jbj2. The positions and widths of the peaks, which are
independent of a and b, have to be determined in advance
by a calibration of the detector. Clearly, measuring jaj
and jbj requires the knowledge of the whole distribution
P�m, t�; i.e., the measurements have to be repeated.

As expected from the basic principles of quantum me-
chanics the measurement process above all disturbs the
quantum state; hence tmeas $ tw . Further, the mixing
renders the measurement nonideal. The measurement is
useful only if the mixing is slow, tmix ¿ tmeas. Other-
wise the mixing quickly erases the information about the
qubit’s state and prevents a successful readout at tmeas.

The distribution function P�m, t� describes the statistics
of the charge which has tunneled. The distribution of pos-
sible currents in the SET and current-current correlations
require, furthermore, the knowledge of correlations of the
values of m at different times. In earlier papers on the sta-
tistics in a SET [7] or a QPC [8,9] the behavior of P�m, t�
at times shorter than tmix was derived, and effects of the
detector output on the further quantum dynamics were
discussed [10]. Here we develop a systematic approach,
based on the von Neumann time evolution of the density
matrix of the coupled system. This approach allows us to
study averages and correlators of the current and charge.
Since, due to shot noise, instantaneous values of the current
fluctuate strongly, we study the current Ī , averaged over
a finite time interval Dt. Accordingly we determine the
© 2000 The American Physical Society
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distribution of currents p�Ī , Dt, t�. We derive analytic
expressions for this distribution as well as P�m, t�, valid
on both short and long time scales. We study the noise
spectrum of the current and find that in the limit of strong
measurement (tmeas , tmix) the long-time dynamics is
characterized by telegraph noise, with jumps between
two possible current values, corresponding to two qubit’s
eigenstates.

The results are of immediate experimental interest.
Recently quantum coherence was demonstrated in a
macroscopic superconducting electron box [11], but the
coherence time was limited by the measuring device. The
SET-based measurement should extend the coherence
time, which combined with experimental progress in
fast measurement techniques [12] should increase the
maximum number of coherent quantum manipulations.

Master equation for the measurement by a SET.—The
system of a qubit coupled to a SET is shown in Fig. 1. The
qubit is a superconducting single-charge box with Joseph-
son junction in the Coulomb blockade regime. Its dynam-
ics is limited to a two-dimensional Hilbert space spanned
by two charge states, with n � 0 or 1 extra Cooper pair
on a superconducting island. The island is coupled ca-
pacitively to the SET, influencing the tunneling current.
During manipulations of the qubit [7] the SET is kept in
the off state (Vtr � 0); i.e., no dissipative currents causing
decoherence are flowing. To perform the measurement,
the transport voltage Vtr is switched to a sufficiently high
value, so that the current starts to flow in the SET. As
we will show, monitoring the current provides information
about the qubit’s state [13].

The Hamiltonian of the system is given by

H � HSET 1 Hc 1 HT 1 Hqb 1 Hint . (1)

The first three terms describe the single-electron transis-
tor. Here HSET � ESET�N 2 Ng�2 is its charging energy,
quadratic in the charge eN on the middle island. The gate
charge eNg is defined by the gate voltage Vg and other volt-
n
m

VtrgV
IVx

N

FIG. 1. The circuit of a qubit and a SET used as a meter.

ages in the circuit. The term Hc describes the fermions
in the island and electrodes, while HT governs the tunnel-
ing in the SET. The Hamiltonian of the qubit is given, in
the eigenbasis of the charge n̂, by Hqb � Echn̂ 2

1
2EJŝx ,

with n̂ � � 0
0

0
1 �. Finally, Hint � 2EintNn̂ is the Coulomb

coupling between the SET and the qubit. In Fig. 1 me de-
notes the charge which has tunneled through the SET. The
charging energy scales ESET, Ech, Eint are determined by
capacitances in the circuit, and EJ is the Josephson cou-
pling. Here we neglect the qubit’s coupling to the envi-
ronment, which is justified as long as the corresponding
relaxation is slower than the SET-induced mixing [13].

The full density matrix can be reduced by tracing over
microscopic degrees of freedom while keeping track only
of the qubit’s state, N and m. Moreover, a closed set
of equations can be derived for r

ij
N �m�, the entries of

the density matrix, which are diagonal in N and m [14]
(i, j � 0, 1 refer to a qubit’s basis). From this density
matrix we obtain by further reduction the 2 3 2 density
matrix of the qubit, �̂�t� �

P
N ,m r̂N �m, t�, the charge

distribution P�m, t� �
P

N trr̂N �m, t�, and other statistical
characteristics of the current in the SET.

At low temperatures and transport voltages only two
charge states of the SET’s middle island, with N � 0 and
N 1 1 � 1 electrons, contribute to the dynamics. Ex-
panding in the tunneling term to lowest order, after the
Fourier transformation r̂N �k� �

P
m e2ikmr̂N �m� we ob-

tain the following master equation (cf. Refs. [7,13]):
d
dt

µ
r̂N

r̂N11

∂
1

i
h̄

√
�Hqb, r̂N �

�Hqb 1 2Eintn̂, r̂N11�

!
�

µ
2ǦL e2ikǦR

ǦL 2ǦR

∂ µ
r̂N

r̂N11

∂
. (2)
The operators ǦL�R are the tunneling rates in the left and
right junctions, defined by

ǦLr̂ � GLr̂ 2
1
h̄ paL�2Eintn̂, r̂	 , (3)

ǦRr̂ � GRr̂ 1
1
h̄ paR�2Eintn̂, r̂	 . (4)

Here aL�R � h��4p2e2RT
L�R� is the tunnel conductance

of the junctions. The rates are fixed by the poten-
tials mL and mR � mL 1 Vtr of the leads: h̄GL �
2paL�mL 2 �1 2 2Ng�ESET� and h̄GR � 2paR��1 2

2Ng�ESET 2 mR�. They define the tunneling rate
G � GLGR��GL 1 GR� through the SET. The anticom-
mutators in Eqs. (3) and (4) make these rates (and hence
the current) sensitive to the qubit’s state and thus allow
the measurement.
Reduction of the master equation.—While we cannot
provide a general solution of the master equation (2), we
find several regimes where the analysis simplifies because
there exists a (pointer) qubit’s basis in which one can treat
off-diagonal elements perturbatively. In particular, under
suitable conditions dephasing (decay of the off-diagonal
entries of the qubit’s density matrix in this basis) is much
faster than mixing (relaxation of the diagonal to their sta-
tionary values), which is the prerequisite for a measure-
ment process.

In this Letter we study the weak-coupling regime Eint ø
h̄�GL 1 GR�. In this regime the qubit’s Hamiltonian fol-
lows the dynamics of the charge N , randomly switching
between Hqb and Hqb 1 2Eintn̂ at high rates GL and
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GR . The qubit’s dynamics is described by the mean value
of the Hamiltonian H̄qb � Hqb 1 2N̄Eintn̂ and the fluc-
tuating part 2�N 2 N̄�Eintn̂, which destroys coherence.
[The average charge N̄ � GL��GL 1 GR� fixes also the
average energy Ēch � Ech 1 2N̄Eint.] Comparing the
bare (at H̄qb � 0) dephasing rate due to these fluctua-
tions, gw � 4GE2

int�h̄2�GL 1 GR�2, with the level spacing
E � �E2

J 1 Ē2
ch�1�2 of H̄qb, we find two physical limits:

In the Hamiltonian-dominated limit, E ¿ h̄gw , the mea-
surement is performed in the eigenbasis of H̄qb, while
in the fluctuation-dominated regime, h̄gw ¿ E , it is the
charge basis. In both limits one can treat nondiagonal en-
tries of H̄qb, Hint perturbatively.

(a) Expansion in the eigenbasis: E ¿ h̄gw . In this

basis 2Eintn̂ � E
k
int�1 2 ŝz� 2 E�

intŝx , where E
k
int �

EintĒch�E and E�
int � EintEJ�E . In zeroth order, we

analyze the dynamics without off-diagonal mixing terms,
E�

int � 0. In this case the entries r
ij
N with different pairs

of indices ij are decoupled. For the diagonal modes the
absence of mixing, further, implies the conservation of
occupations of the eigenstates � ii � rii�k � 0� [here
r̂�k� �

P
N r̂N �k�], and we find two corresponding

Goldstone modes for k ø 1, with eigenvalues

lii
1�k� 
 2iGik 2

1
2

fiGik2. (5)

Here Gi � G
i
LG

i
R��Gi

L 1 G
i
R� are the tunneling rates

through the SET for two pointer states, expressed
by the tunneling rates in the junctions G

0�1
L � GL 6

2paLE
k
int�h̄ and G

0�1
R � GR 7 2paRE

k
int�h̄. The Fano

factors fi � 1 2 2Gi��Gi
L 1 G

i
R� reduce the shot noise

� f0 
 f1 � f�. The other two eigenmodes decay fast,
with the rates lii

2 
 2�Gi
L 1 G

i
R�.

The analysis of the dynamics of the four off-diagonal
modes in ij reveals the dephasing of the qubit by the mea-

surement, with rate t21
w � 4GE

k 2
int�h̄2�GL 1 GR�2.

Finite E�
int modifies the picture by introducing mixing:

In second order the degeneracy between the long-living
modes (5) is lifted and the long-time evolution of the oc-
cupations rii�k� is given by a reduced master equation,

d
dt

µ
r00�k�
r11�k�

∂
� M

µ
r00�k�
r11�k�

∂
, (6)

M �

µ
l00

1 �k� 0
0 l11

1 �k�

∂
1

1
2tmix

µ
21 1
1 21

∂
. (7)

For the mixing time, tmix, we obtain

tmix �
E 2 1 h̄2�GL 1 GR�2

4GE� 2
int

. (8)

In addition, the second order correction to the dephasing
rate is �2tmix�21.

To describe the readout we consider first t ø tmix and
neglect the second term in Eq. (7). Then, for the qubit
initially in a superposition aj0� 1 bj1� of eigenstates of
4580
H̄qb, the distribution P�m, t� displays two peaks at m �
G0t and G1t. They have weights jaj2 and jbj2 and widthsp

2fiGi t. They are well separated after the time

tmeas �

√p
2f0G0 1

p
2f1G1

G0 2 G1

!2

. (9)

At longer times t . tmix the mixing modifies this pic-
ture: the occupations relax to the equal-weight mixture:
�00�t� 2 �11�t� ~ exp�2t�tmix�. Thus the two-peak
structure appears only in the interval tmeas # t , tmix.
Therefore, a strong measurement requires tmeas ø tmix.
In the sense that the measurement takes longer than the
dephasing, tmeas ¿ tw , it can be called nonefficient [10].

(b) Expansion in the charge basis: h̄gw ¿ E : Ar-
guing as in case (a), we expand in EJ which is the only
off-diagonal term. The dephasing rate is gw , while for
the mixing we get t

21
mix � E2

J �h̄2gw . A phenomenon,
termed the Zeno or watchdog effect, can be seen [3,8]: the
stronger the dephasing, the weaker is the rate t

21
mix of jumps

between the charge states.
The quantum measurement with a QPC can be described

in a similar way. The Coulomb interaction of the qubit
with the current in the QPC results in two tunneling rates
G0�1 � Ḡ 6 dG�2 for two qubit’s states. Tracing out
microscopic degrees of freedom (in a multichannel or a
high barrier limit) one arrives at a master equation [3] for
the density matrix rij�m�,
d
dt

r̂ 1
i
h̄

�Hqb, r̂� �

∑
Ḡr̂ 1

1
4

dG�ŝz , r̂	
∏

�e2ik 2 1�

2
1
4

gwe2ik�ŝz , �ŝz , r̂�	 , (10)

where gw � 1
2 �
p

G0 2
p

G1�2. The perturbative analysis
of Eq. (10) produces again the reduced equations (6),(7).
As above, the pointer basis depends on the ratio of the bare
dephasing rate gw and the level spacing E of Hqb. In
the Hamiltonian-dominated regime we find in the eigen-
basis the mixing and dephasing rates, t

21
mix � gwE2

J �E 2

and gw�1 2 E2
J �2E 2�. In the opposite, Zeno limit the de-

phasing rate in the charge basis is gw and the mixing rate
is t

21
mix � E2

J �h̄2gw . The measurement time and the de-
phasing time coincide, implying a 100% efficiency, when
the mixing is weak, i.e., EJ ø E or h̄gw ¿ E .

m/t
1Γ

mix

Γ

τ

meas

a

τ

t

0

P(m,t)

mix

1

τ
0

t

Γ
Γ I

p(I,   t, t)∆b

FIG. 2. The probability distributions of the charge (a) and cur-
rent [(b): tmeas , Dt , tmix]. P�m, t� in (a) is rescaled, so that
the peaks do not move. The t-axis scale is logarithmic.
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Statistics of charge and current.—The results of this
section apply to the SET and QPC alike. The statisti-
cal quantities studied depend on the initial density matrix,
r0, but only on jaj2 2 jbj2 in the two-mode approxima-
tion (6),(7). We solve Eq. (6) to obtain P�m, t jr0� �
trqb�U�m, t�r0�, where U�m, t� is the inverse Fourier trans-
form of U�k, t� � exp�M�k�t�. If G0�1 � Ḡ 6 dG�2 are
close, the resulting distribution is

P�m, t jr0� �
X
dm

P̃�m 2 dm, t jr0�
e2dm2�2fḠtq

2pfḠt
. (11)
The first term contains two delta peaks, corresponding to
two qubit’s pointer states:

P̃�m, t jr0� � Ppl

µ
m 2 Ḡt
dGt�2

,
t

2tmix

Ç
r0

∂

1 e2t�2tmix�jaj2d�m 2 G0t�

1 jbj2d�m 2 G1t�� . (12)

On the time scale tmix the peaks disappear; instead a
plateau arises. It is described by
Ppl�x, t jr0� � e2t 1
2dGtmix

�I0�t
p

1 2 x2� 1 �1 1 x�jaj2 2 jbj2�� 3 I1�t
p

1 2 x2��
p

1 2 x2	 , (13)

at jxj , 1 and Ppl � 0 for jxj . 1. Here I0, I1 are the modified Bessel functions. At longer times the plateau transforms
into a narrow peak centered around m � Ḡt. The Gaussian in Eq. (11) arises due to shot noise. Its effect is to smear out
the distribution (see Fig. 2a).

We also calculate the joint probability to have m electrons at t and m 1 Dm electrons at t 1 Dt. The evolution
is Markovian, and we obtain P2�m, t; m 1 Dm, t 1 Dt� � trqb�U�Dm, Dt�U�m, t�r0� for Dt . 0. This allows us to
find the probability distribution of the current Ī �

Rt1Dt
t I�t0� dt0 � Dm�Dt averaged over the time interval Dt. The

derivation reduces to the calculation of the charge distribution (11) for different initial conditions:

p�Ī , Dt, t j jaj2 2 jbj2� � P�m � ĪDt, Dt j e2t�tmix�jaj2 2 jbj2�� . (14)
As shown in Fig. 2b, a strong quantum measurement is
achieved if tmeas , Dt , tmix. In this case the current,
measured at t , tmix, is close to G0 or G1, with probabili-
ties jaj2 and jbj2, respectively. At longer t a typical current
pattern is a telegraph signal jumping between G0 and G1

on a time scale tmix. If Dt ø tmeas the meter does not
have enough time to extract the signal from the shot-noise
background. Averaging over longer intervals Dt . tmix
erases the information due to the meter-induced mixing.

The telegraph-noise behavior is also seen in the current
noise obtained from the correlator

�I�t�I�t0��r0 �
X
m,m0

mm0≠t≠t0P2�m, t; m0, t0 jr0� . (15)

Fourier transformation gives in the stationary case (t, t0 ¿
tmix) the noise spectrum at frequencies vtw ø 1 as the
sum of the shot- and telegraph-noise contributions:

SI�v� � 2e2fḠ 1
e2dG2tmix

v2t
2
mix 1 1

. (16)

At low frequencies vtmix ø 1 the latter becomes visible
on top of the shot noise as we approach the regime of the
strong measurement: Stelegraph�Sshot 
 4tmix�tmeas.

To conclude, we have developed a master equation ap-
proach to study the statistics of currents in a SET or a QPC
as a quantum meter. We evaluate the probability distribu-
tions and the noise spectrum of the current. These mea-
surable quantities reveal the time scales characterizing the
quantum measurement process.
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