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Highly Anisotropic g-Factor of Two-Dimensional Hole Systems
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Coupling the spin degree of freedom to the anisotropic orbital motion of two-dimensional (2D) hole
systems gives rise to a highly anisotropic Zeeman splitting with respect to different orientations of an
in-plane magnetic field B relative to the crystal axes. This mechanism has no analog in the bulk band
structure. We obtain good, qualitative agreement between theory and experimental data, taken in GaAs
2D hole systems grown on (113) substrates, showing the anisotropic depopulation of the upper spin
subband as a function of in-plane B.

PACS numbers: 71.70.Ej, 73.20.Dx
Since the early days of two-dimensional (2D) carrier
systems in semiconductors it has been commonly assumed
that the Zeeman energy splitting, DE � g�mBB, with g�

the effective g factor and mB the Bohr magneton, is inde-
pendent of the direction of the external magnetic field B
[1]. Recently, however, calculations and experiments have
shown that g� can have different values for B applied in
the direction normal to the plane of the 2D system com-
pared to in-plane [2–6]. Here we report calculations and
experimental data for 2D holes occupying the heavy hole
subband, demonstrating that, even for a purely in-plane B,
g� can depend strongly on the orientation of B with respect
to the crystal axes [7].

In bulk semiconductors the motion of electrons and
holes in the presence of spin-orbit interaction gives rise
to a g� which is significantly modified compared to the
free particle g factor g0 � 2 (Ref. [8]). The resulting g�

of holes (and electrons) is nearly isotropic. Commonly,
the isotropic part of the hole g� is denoted by k [9].
The anisotropic part, q, is typically 2 orders of magnitude
smaller than k and, in the present discussion, is neglected
completely. The smallness of q is in sharp contrast to the
orbital motion of holes for which we have highly aniso-
tropic effective masses m� reflecting the spatial anisotropy
of the crystal structure. In a 2D hole system (2DHS) we
have heavy hole (HH) subbands (z component of angu-
lar momentum M � 63�2) and light hole (LH) subbands
(M � 61�2). In the presence of an in-plane B, k couples
the two LH states, and the HH states to the LH states [4].
But there is no direct coupling between the HH states pro-
portional to k. Therefore, the authors of Refs. [3–6] con-
cluded that the Zeeman splitting of HH states due to an
in-plane B is suppressed. From a group-theoretical point
of view, the in-plane/out-of-plane anisotropy discussed in
Refs. [2–6] can be traced back to the fact that, apart from
the small terms dependent on q and wave vector k, the bulk
Zeeman Hamiltonian [8,9] has spherical symmetry which
in 2D systems is reduced to an axial symmetry. However,
due to the anisotropic orbital motion, the symmetry of the
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total Hamiltonian is lower than axial. Thus for crystallo-
graphic directions other than the high-symmetry directions
[001] and [111] (neglecting a broken inversion symmetry)
and nonzero spin-orbit interaction it follows that g� can de-
pend on the direction of the in-plane B. Here we will show
that, in agreement with these symmetry considerations, a
new mechanism gives rise to a large and highly anisotropic
Zeeman splitting with respect to different orientations of
the in-plane magnetic field B relative to the crystal axes.

In the following we will discuss quantum wells (QW’s)
grown in the crystallographic �mmn� direction (with m, n
integers). Hence we use the coordinate system shown in
Fig. 1(a) with u denoting the angle between �mmn� and
[001]. We remark that recently QW’s for 2DHS’s have of-
ten been grown in [113] direction as this yields particularly
high hole mobilities [10].

In general, the dynamics of 2D holes is rather compli-
cated due to the nonparabolic and anisotropic terms in the
Hamiltonian. Therefore, a quantitative understanding of
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FIG. 1. (a) Coordinate system for QW’s grown in �mmn� di-
rection (z direction). Here u is the angle between �mmn� and
[001], i.e., we have u � arccos�n�

p
2m2 1 n2 �. The axes for

the in-plane motion are �nn�2m�� (x) and �110� ( y). (b) Aniso-
tropic effective g factor g� of the HH1 subband for a 200 Å wide
GaAs�Al0.3Ga0.7As QW as a function of the angle u. Results
are shown for the in-plane B along the �nn�2m�� and �110� di-
rections. The solid and dashed lines were obtained by means of
a numerical diagonalization of the Luttinger Hamiltonian. The
dotted and dash-dotted lines were obtained by means of Eq. (1).
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phenomena such as the anisotropic Zeeman splitting can
be obtained only by means of accurate, numerical compu-
tations [11]. In particular, the Zeeman splitting of 2D hole
states depends on higher orders both of the in-plane wave
vector kk � �kx , ky , 0� and of B. As we will show next, it
is, nevertheless, very helpful for a qualitative understand-
ing to identify analytically the relevant lowest order terms.

We describe the hole subband states by means of the
4 3 4 Luttinger Hamiltonian [9] using a symmetry-
adapted basis [12]. The anisotropy of the orbital motion
can be characterized by a single parameter d � g3 2 g2
(Ref. [13]), where g1 (used below), g2, and g3 are the
Luttinger parameters [9]. For growth directions other than
[001] and [111] even at the bottom of the hole subbands,
i.e., for kk � 0, the anisotropic motion results in an
off-diagonal HH-LH mixing proportional to dk2

z which
complements the HH-LH coupling proportional to kB.
Treating both terms by means of degenerate perturbation
theory we obtain in second order for g� at the bottom of
the HH subbands in an infinitely deep rectangular QW

gHH
�nn�2m�� � 6�2 2 3 sin2�u�� sin�u�
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with

gHH
z � 2g1 1 2��1 2 a�g2 1 ag3� , (2a)

gLH
z � 2g1 2 2��1 2 a�g2 1 ag3� , (2b)

a � sin2�u� �3 2
9
4 sin2�u�� . (2c)

Here gHH
z and gLH

z are the reciprocal effective masses
in z direction in the axial approximation for the HH and
LH subbands, respectively [12,14]. The anisotropic g fac-
tor (1) is proportional to k and d, i.e., it is due to the
combined effect of the isotropic bulk Zeeman Hamiltonian
and the anisotropic orbital motion in the valence band. It
disappears in the axial limit d � 0. Equation (1) has no
analog in the bulk band structure [8,9]. Moreover, it is
fundamentally different from the anisotropic g� discussed
in Refs. [2–6]. Our sign convention for g� used in Eq. (1)
corresponds to the dominant spinor component of the mul-
ticomponent eigenstates (using a basis of angular momen-
tum eigenfunctions with quantization axis in the direction
of B). We remark that in unstrained QW’s the topmost
subband is the HH1 subband.

For LH subbands in an in-plane B as well as for HH and
LH subbands in a perpendicular B, g� contains terms simi-
lar to Eq. (1). However, the dominant contribution is given
by the bulk g factor k. For LH subbands in an in-plane
B we have basically gLH

k � 4k, while for a perpendicu-
lar B we have gHH

z � 6k and gLH
z � 2k (Refs. [6,9]).
Yet, this implies a remarkable difference [3–6] compared
with Eq. (1).

In Fig. 1(b) we show the anisotropic g� of the HH1
subband for a 200 Å wide GaAs�Al0.3Ga0.7As QW as a
function of the angle u. The analytical expressions (1)
(dotted and dash-dotted lines) are in very good agreement
with the more accurate results obtained by means of a nu-
merical diagonalization [4,11] of the Luttinger Hamilto-
nian (solid and dashed lines). Figure 1(b) demonstrates
that g� can be very anisotropic [15]. For example, for the
growth direction [113], g� is about a factor of 4 larger
when B k �332� compared to when B k �110�. Moreover,
the sign of gHH

�nn�2m�� is opposite to the sign of gHH
�110�.

Equation (1) is applicable to a wide range of cubic
semiconductors with results qualitatively very similar to
Fig. 1(b). In particular, the relative anisotropy

gHH
�110�

gHH
�nn�2m��

� 2
sin�u�p

4 2 3 sin2�u�
(3)

is independent of the material-specific parameters gi and
k. This remarkable result can be traced back to the fact
that the anisotropy for different directions u in k space is
always characterized by the single parameter d (Ref. [13]).
Note that for QW’s based on narrow-gap semiconductors
we have a larger k and smaller effective masses. Thus
the absolute values of g� are significantly larger than g�

of GaAs shown in Fig. 1(b), but the g� anisotropy is still
given by Eq. (3) and depends only on u. The Zeeman
splitting can be even further enhanced if one uses semi-
magnetic semiconductors containing, e.g., Mn. For these
materials the structure of the Hamiltonian is identical to
the conventional Luttinger Hamiltonian in the presence of
a magnetic field with k replaced by the effective g factor
due to the paramagnetic exchange interaction [5,6]. There-
fore Eq. (1) and the g� anisotropy [Eq. (3)] are readily ap-
plicable to semimagnetic materials, also.

In a Taylor expansion of the Zeeman splitting, DE�B�,
g� (times mB) is the prefactor for the lowest order
term linear in B. Often terms of higher order in B are
neglected because of their relevant insignificance. An
interesting feature of Fig. 1(b) is the vanishing of g� for
the high-symmetry growth directions [001] and [111]
(Refs. [4,16]). For the 2DHS discussed in Fig. 1(b) this
results in a splitting DE which at B � 1 T is more than
2 orders of magnitude smaller than DE for growth direc-
tions [113] and [110]. For these high-symmetry directions
DE is proportional to B3 (Ref. [17]). In second order
perturbation theory we obtain for the HH1 subband of an
infinitely deep rectangular QW of width d grown in [001]
direction

DE � �mBB�3

µ
m0d2
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Here f is the angle between the in-plane B and the [100]
axis. We get similar, though somewhat longer expressions
for growth direction [111]. It is remarkable that we have
a nonzero DE even in the limit k � 0. This can be un-
derstood as follows: The 4 3 4 Luttinger Hamiltonian
[9] which is underlying our calculations corresponds to
an infinitely large spin-orbit splitting between the topmost
valence band G

y
8 and the split-off band G

y
7 . Therefore

spin-orbit interaction is not explicitly visible in our results,
though, similar to Zeeman splitting in bulk semiconductors
[8], Eqs. (1) and (4) are a consequence of spin-orbit inter-
action. In 2D systems the motion of electrons and holes
in the presence of this interaction can give rise to a Zee-
man splitting even without a bulk g�. We remark that in
a parabolic QW the in-plane g� of the HH subbands also
contains such terms independent of k. We have here a 2D
analog of Roth’s famous formula [8] for the electron bulk
g�. Finally we note that, unlike [14] Eq. (1), DE in Eq. (4)
increases proportional to d4, i.e., Zeeman splitting is most
efficiently suppressed in narrow QW’s.

We have probed the anisotropy of g� experimentally by
measuring the magnetoresistance of a high-mobility 2DHS
as a function of in-plane B. The sample is a 200 Å wide
Si-modulation doped GaAs QW grown on (113)A GaAs
substrate. The left two panels of Fig. 2 show the resistivity
r measured as a function of in-plane B for three different
densities that were changed via back- and front-gate biases.

FIG. 2. Left and central panels: Fractional change in resis-
tivity r�B��r�0� due to an in-plane B, measured at T � 0.3 K
in a GaAs 2D hole system grown on a (113) substrate, for B
perpendicular to the current I and different 2D densities as in-
dicated. Solid lines: B k �332�, dashed lines B k �110�. The
arrows mark B� as defined in the text. The resistivities at B � 0
in the left (central) panel are from top to bottom 7.2 (4.9), 2.2
(1.6), and 0.55 �0.45� kV�square. Right panel: Calculated den-
sity N1 in the upper spin subband as a function of B. Note that
the horizontal axes in the left and central panels and in the right
panel have different scales.
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The direction of current I in the measurements of Fig. 2
was kept perpendicular to the direction of in-plane B. For
easier comparison we have plotted the fractional change
r�B��r�B � 0�. Apart from an overall positive magne-
toresistance these traces show a broad feature consisting
of an inflection point followed by a reduction in slope fol-
lowed by another inflection point. In Fig. 2 we have placed
arrows between the two inflection points at a value of B
we call B�. The magnetoresistance feature at B� in Fig. 2
is related to a spin-subband depopulation and the result-
ing changes in subband mobility and intersubband scatter-
ing as the in-plane B is increased [18]. It is remarkable
that B� for the B k �332� traces is several Tesla smaller
than for the �110� traces. This is strong evidence for the
anisotropy of the in-plane g�. This interpretation is vali-
dated by our self-consistently calculated [4,11,14] results
for the density N1 of the upper spin subband as a function
of B, shown in the right panel of Fig. 2. The density N1

decreases much faster for B k �332� than for B k �110�,
in agreement with Fig. 1(b). Data taken with I k B show
that while the magnetoresistance changes, B� is indepen-
dent of the I direction and depends only on the density
and the direction of B with respect to crystal axes, there-
fore supporting the association of B� with the onset of spin-
subband depopulation (see Ref. [18] for more details).

One might ask whether the data in Fig. 2 could be sum-
marized by a single value of g� for each trace. Unfortu-
nately, this is not possible because, due to the complicated
band structure of holes, g� depends on the in-plane wave
vector kk, and we are averaging over g��kk� for kk up to
the Fermi wave vector kF . The significance of this ef-
fect can be readily deduced from the right panel of Fig. 2,
as we would have straight lines for N1�B� if g� (and the
effective mass m�) were not dependent on kk. In Fig. 2
terms of higher order in B are negligibly small.

In Fig. 2 the measured B� is significantly smaller than
the calculated B for a complete depopulation of the upper
spin-subband. We note that for our low-density samples it
can be expected that g� is enhanced due to the exchange
interaction and the spin polarization caused by the in-plane
B [1,19,20]. This effect was not taken into account in
our self-consistent calculations. The overall agreement be-
tween the experimental data and the calculations, however,
implies that these many-particle effects do not qualita-
tively affect the anisotropy of g�. We wish to propose that
the anisotropic g� as given in Eq. (1) for in-plane wave
vector kk � 0 and without many-body effects may be
measured using optical and microwave experiments such
as those in Ref. [7].

The large anisotropy of the Zeeman splitting in 2DHS’s
offers many possible device applications. In a polycrys-
talline material, e.g., one could alter the degree of spin po-
larization in different domains by changing the direction
of the external B. As can be seen in Fig. 1(b), because
of the sign reversal of g� it is even possible to have dif-
ferent domains with opposite spin polarization for a given
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direction of B. Recently, there has been a growing inter-
est in controlling the spin degree of freedom for quantum
computing and spin electronics. In Ref. [21] the authors
have sketched a quantum device which makes use of the
spatial variation of g� in layered semiconductor structures
made of, e.g., AlxInyGa12x2yAs. However, the authors
have estimated that a substantial change in g� requires
a fairly large electric field of the order of 100 kV�cm.
Oestreich et al. [22] and Fiederling et al. [23] have sug-
gested a spin aligner based on semimagnetic semiconduc-
tors. Here the g-factor anisotropy of 2DHS’s provides
a powerful additional degree of freedom for engineering
such devices.

In conclusion, we have shown that coupling the spin
degree of freedom to the anisotropic orbital motion of
2D hole systems gives rise to a highly anisotropic Zee-
man splitting with respect to different orientations of an
in-plane magnetic field relative to the crystal axes.
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