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Microrheology of Biopolymer-Membrane Complexes
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We create tailored microstructures, consisting of complexes of lipid membranes with self-assembled
biopolymer shells, to study the fundamental properties and interactions of these basic components of
living cells. We measure the mechanical response of these artificial structures at the micrometer scale,
using optical tweezers and single-particle tracking. These systems exhibit rich dynamics that illustrate
the viscoelastic character of the quasi-two-dimensional biopolymer network. We present a theoretical
model relating the rheological properties of these membranes to the observed dynamics.

PACS numbers: 87.19.Tt, 68.10.Et, 82.65.– i, 87.80.–y
Whereas the elasticity of fluid membranes has been
studied extensively, less is known experimentally about
viscoelastic, solid, or polymerized membranes because few
examples of these have been found [1]. The presence of a
finite shear modulus raises new dynamical properties with
respect to those of fluid membranes, whose energy is char-
acterized solely by bending [2]. We have created arti-
ficial, self-assembled complexes of lipid membranes and
2D-reticulated actin filaments that mimic cytoskeletal net-
works present in cells [3]. Both of these components have
been widely studied in the past in isolation. In the case
of actin, the viscoelasticity of actin filament solutions has
been studied in detail: Because of its large persistence
length �Lp � 17 mm� [4], the elastic and loss moduli
have a frequency dependence (G3D

0 � G3D
00 � f0.75 for

f ¿ 1 Hz) different from that of flexible polymers [5–7].
To study the dynamics of these composite membranes, we
set up a microrheology experiment. We measure with
high precision thermally excited position fluctuations of
micrometer beads attached to them. For small deforma-
tions, we show how displacements perpendicular to the
membrane plane (“out of plane”) are related to the mem-
brane bending elasticity and those parallel (“in plane”) are
linked to its in-plane shear viscoelasticity. Both in-plane
and out-of-plane measurements show clear evidence of the
viscoelastic nature of the composite membranes.

Our in vitro model consists of a thin shell of actin fila-
ments polymerized and reticulated on the outside of giant
unilamellar vesicles (�20 mm diameter) grown by electro-
formation [8]. They consist of a mixture of 95% of DOPC
and 5% of DOPE-B which has a biotin group attached to
its polar head [9]. Actin-coated vesicles are obtained by
mixing the vesicles with biotinylated actin filaments (aver-
age length of 10 mm) [10] in the presence of streptavidin.
This creates stable biochemical bonds between filaments
and lipids and cross-links between filaments themselves.
The structure of the network is not precisely known [11],
but the thin fluorescent contour of the vesicles observed
in microscopy (see inset of Fig. 1) indicates that they are
homogeneously coated with a dense actin shell. More-
over, the self-assembling of the actin network on the mem-
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brane induces a decrease of its thermal undulations, as
evidenced visually by the disappearance of the vesicle
shape fluctuations.

FIG. 1. Schematic of the experimental setup. An infrared laser
(Topaz Nd:YAG 1064 nm, Spectra Physics) is focused with a
high numerical aperture objective (Plan Neofluar 1003, NA
1.3, Zeiss). Two acousto-optical modulators (AA.DTS.XY-250,
A&A Opto-Electronique) can deflect rapidly the laser beam to
create two traps [11]. The infrared backscattered light is used
to make an image of the bead on a two quadrants photodiode
(S3096-02, Hamamatsu). The currents delivered by the quad-
rants are converted into voltages through 10 kV resistances.
Their difference is amplified by a low-noise amplifier (SR-560,
Stanford Research Systems) with a 30 kHz bandwidth and ac-
quired with a Lab-PC1200 acquisition board at 60 kHz. The
power spectrum of the position fluctuations of the probe beads
is computed using a custom software written with LABVIEW. We
show in the inset the picture of a fluorescent vesicle (14 mm
diameter) coated with actin filaments.
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In order to quantify the effect of the actin network on the
vesicle elasticity, we track the Brownian motion of strepta-
vidin coated beads bound with optical tweezers to the com-
posite membranes (i.e., to biotinylated actin monomers).
Results are compared to those obtained with fluid vesicles,
without the actin shell (the bead is attached to biotinylated
lipids). The principle of the measurement is illustrated by
the following simple example. For a trapped bead (radius
Rb) in solution, the power spectrum of its position fluc-
tuations is [12]

�x2� f�� �
2zkBT

4p2z 2f2 1 k2 , (1)

where x�t� is the bead position in time, x� f� is its Fourier
transform, z � 6phRb is the drag coefficient on the bead
in the fluid of viscosity h, and k is the trap stiffness. When
the bead is attached to a vesicle, the power spectrum is
modified due to the forces exerted by the membrane on
the bead. The membrane energy consists of a sum of a
bending term [2] (with modulus k) and, in the case of
actin-coated membranes, a term related to the in-plane
viscoelasticity (2D complex modulus G � G0 1 iG00). In
this case, the power spectrum depends on k, h, k, and
G. Therefore, changes in the spectrum before and after
attachment to a vesicle are directly associated with the
membrane mechanical properties.

The optical trapping experiment and the position de-
tection setup are implemented on a home-built micro-
scope (Fig. 1). The spectrum of the position fluctuations
of the probe bead is obtained before its attachment to a
vesicle. A Lorentzian fit to the data provides both the
trap stiffness and the calibration factor [12]; above the
trap corner frequency fc � k�2pz , a power law of ex-
ponent 22.00 6 0.02, consistent with Brownian motion,
is fitted to the spectrum. Then the bead is bound to
the membrane, and its spectrum is computed and com-
pared to the previous one [13]. In practice, we use a
trap stiffness as low as possible (10 to 50 Hz): Above
fc the spectrum does not depend on k but only on the
membrane properties and on the solvent viscosity. The
bead motion is measured in two directions, perpendicu-
lar to the membrane (out of plane) and parallel to the
membrane (in plane): In-plane fluctuations will be re-
lated to membrane in-plane viscoelasticity, whereas out-of-
plane fluctuations will be linked to the membrane bending
elasticity.

The power laws given below are the best fits to the
data between about 50 Hz (imposed by the low trap corner
frequency) and 1 kHz in the case of fluid membranes [13]
and 4 kHz in the case of actin-coated ones [14]. One to two
decades in frequency correspond to two to four decades
in the spectrum amplitude: this allows us to distinguish
between close power law exponents.

On Fig. 2 are shown examples of power spectra ob-
tained for the out-of-plane motion of 1.5 mm beads weakly
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FIG. 2. Power spectra of the out-of-plane position fluctuations
of 1.5 mm trapped beads: in solution, attached to a fluid mem-
brane and attached to an actin-coated one. Above the trap corner
frequency (�20 Hz in each case), power laws of exponent
22.01 6 0.02 (trapped bead), 21.68 6 0.03 (fluid membrane),
and 21.88 6 0.01 (actin-coated membrane) are best fits to
these data. The curve for the fluid membrane shows the
expected crossover to Brownian motion above about 1 kHz
(note the overlap with the curve for an optical trap alone).
The lines f21.68 (continuous) and f21.88 (dashed) are drawn as
guides to the eye.

trapped �k � 1026 N�m� and attached either to a fluid
or to an actin-coated membrane. For fluid membranes,
the amplitude of the power spectrum (which is the same
from one experiment to another) is lower than the one
of a trapped bead alone. A power law with an expo-
nent of 21.70 6 0.05 best fits our data between 50 Hz
and 1 kHz. The error bar is obtained from a statisti-
cal study of 12 curves measured with 4 different vesicles
and 1 or 1.5 mm beads (this statistical error is indeed
larger than the one calculated for each spectrum using a
least squares method). For actin-coated membranes, an
even smaller amplitude is observed. The amplitude drops
from fluid to actin-coated vesicles by a factor of 3 6 1
at 500 Hz, depending on the actin-coated vesicle. More-
over, a slightly but systematically different power law with
an exponent of 21.85 6 0.07 is measured (24 curves and
11 vesicles).

The out-of-plane position fluctuations of a point on the
membrane are related, for small displacements, to its bend-
ing energy [2,15]: Eb � �1�2�k

R
�=2h�2 ds, where h�r�

is the membrane transverse position at the coordinate r
of a planar reference state. Using the equipartition theo-
rem, the mean square amplitude of a mode q is �jhqj

2� �
kBT�kL2q4, where hq �

R
h�r�e2iqr d2r and L2 is the

membrane area; its relaxation frequency is vq � kq3�4h

[16]. The time correlation of the height fluctuations be-
ing �hq�t�hq�0�� � �hq

2�e2vqt [17], the Fourier transform
leads to the out-of-plane power spectrum as a function of
the frequency:
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�dh2�v�� � 2
X
q

�hq�2 vq

v2 1 v2
q

�
kBT
kp

Z 1`

0

dq
q3

vq

v2 1 v2
q

. (2)

Note that upper and lower limits of integration depend on
the bead size (radius Rb) and vesicle size (radius Rn),
respectively. But the asymptotic result for large Ry and
small Rb depends on k and f as [17]

�dh2� f�� ~ k21�3f25�3. (3)

In the presence of the probe bead, this expression holds
as long as the fluctuation wavelength, l � 2p�q, is large
compared with the bead size: Above a crossover frequency
f0 the power spectrum should be that of simple bead dif-
fusion. Using the dispersion relation and the condition
l � Rb , one gets f0 � kp2�hR3

b , which lies around a
few kHz for a 1.5 mm bead attached to a fluid membrane
[k � �10 20�kBT [2,18] ]. As indicated above, we ob-
serve a regime with a power law �21.70� in agreement with
the predicted one �25�3�. Moreover, with 6 mm beads, the
power spectra for a trapped bead and for a bead bound to a
fluid membrane � f0 � 30 Hz� are the same, as predicted
by the model (data not shown).

In the presence of the actin network, the reduced am-
plitude of the power spectrum results from an increase in
k. By comparing the amplitudes of the spectra of fluid and
actin-coated vesicles (k21�3 dependence), we infer a bend-
ing modulus of the composite membrane that is between
100kBT and 1000kBT at 500 Hz, depending on the vesicle.
As mentioned above, we also measure a different power
law exponent �21.85 6 0.07�. This feature can be ex-
plained by a frequency dependence of the bending modu-
lus [see Eq. (3)]. For an actin network of thickness h,
we expect k � h2G0� f� [15]. From Eq. (3) and the mea-
sured exponent of 21.85, our results are consistent with
k � f0.5560.21. This dependence in frequency reflects the
viscoelastic character of the composite membrane.

If we consider now the in-plane fluctuations, dynamical
regimes distinct from the out-of-plane motion are expected.
In Fig. 3 are shown typical in-plane power spectra of a
1 mm bead attached to a fluid vesicle and to an actin-
coated one and the fluctuation spectrum of a trapped bead.
Within our experimental accuracy, the in-plane spectra for
a bead attached to a fluid vesicle and for a trapped bead
alone are identical for different bead sizes. This indicates
that fluid membranes exert a negligible viscous drag on
the bead with respect to that of the solution. In the case of
the actin-coated membrane, the power spectrum of the in-
plane fluctuations is shifted to smaller amplitudes and the
power law exponent is 21.85. The amplitude can vary by a
factor of 3 depending on the vesicle, but the same exponent
�21.85 6 0.07� is observed (18 curves, 8 vesicles, and 1
or 1.5 mm beads).
FIG. 3. Power spectra of the in-plane motion of 1 mm trapped
beads: in solution, attached to a fluid membrane and attached to
an actin-coated one. Above the trap corner frequency (�20 Hz)
power laws of exponent 22.00 6 0.02 (trapped bead), 21.99 6
0.02 (fluid membrane), and 21.87 6 0.02 (actin-coated mem-
brane) are best fits to these data. The lines f22 (dashed) and
f21.87 (continuous) are drawn as guides to the eye. The inset
shows the frequency dependence of the shear modulus: G0� f� is
deduced above the trap corner frequencies from the power spec-
tra of in-plane position fluctuations obtained with 1 mm beads
and three different vesicles.

The in-plane dynamics involves both shear viscoelastic-
ity of the actin shell and the shear viscosity of the fluid.
The power spectrum of the in-plane position fluctuations
of a point on the membrane is computed as follows. We
assume that the actin-coated membrane is characterized
by a complex 2D modulus G� f� � G0� f� 1 iG00� f�. A
force F in the membrane plane induces an in-plane dis-
placement u� f� � F�4pG� f�. Using the fluctuation-
dissipation theorem, one obtains [5]

�du2� f�� �
kBT

4p2f
G00� f�

G02� f� 1 G002� f�
. (4)

Assuming that the moduli G0 and G00 scale with
frequency [as is the case for bulk actin solutions
[5–7]: G3D

0� f� � G3D
00� f� � fz] and knowing that

G00 � G0 tan�pz�2� [19], the power spectrum of the in-
plane fluctuations at high frequencies varies as

�du2� f�� �
kBT

4p2fG0� f�
tan	�p�2�z


1 1 tan2	�p�2�z

~ f2�11z�.

(5)

This expression holds as long as the viscous drag on
the bead �z2pfu� is smaller than the elastic force due to
the network 	4pG0� f�u
. When the former dominates, a
crossover to simple Brownian motion is again expected.
The cutoff frequency f1 is a solution of the equation
obtained when the two forces are of the same magnitude:
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f1 � G0� f1��3phRb . By measuring the response of
actin-coated membranes to a tangential deformation
applied with a trapped bead (data not shown), the zero-
frequency shear modulus G0 is estimated to be about
0.5 to 5 mN�m. A lower estimate of f1 is given by
G0�3phRb � 200 Hz for Rb � 0.5 mm. Only below
this crossover are the fluctuations expected to provide a
measure of the complex shear modulus G� f�.

In experiments performed with 1 and 1.5 mm diameter
beads, a power law exponent of 21.85 6 0.07 is mea-
sured. G0� f� is directly calculated using Eq. (5) (inset
of Fig. 3). At high frequencies, it appears that G0� f�
scales as f0.85 (z � 0.85 6 0.07), providing also a self-
consistent estimate of f1 of about 10 kHz. There is a
difference with respect to the exponent measured for
k �0.55 6 0.21�, although the observed exponents are
not inconsistent with a common exponent of z � 0.75
(as expected, based on previous experiments [5,6] and
theory [7] for bulk F-actin solutions). The difference may,
however, be due to a relation between k and G0 more
complicated than the one for a homogeneous plate of
thickness h [k � h2G0� f� [15] ].

Using micromechanical experiments we have charac-
terized the elasticity of micrometer-sized, actin-coated
vesicles. We have shown that the presence of an actin
network significantly increases the bending stiffness of the
membrane and demonstrates viscoelasticity. By detecting
both in-plane and out-of-plane dynamics, we are able
to characterize the shear and bending moduli of the
membrane-polymer complex. We obtain power law
dependence in frequency for the shear modulus 	G0� f� �
f0.8560.07
 and for the bending modulus 	k� f� �
f0.5560.21
. These exponents constitute a quantitative
indication of the viscoelastic character of the actin shell,
independent of the precise structure (e.g., concentration)
of the network attached to the membrane.
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