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Flux core spheromak sustainment by electrostatic helicity injection is studied in resistive MHD. The
geometry has magnetized electrodes at the ends held at a potential difference V . For V . Vc the central
current column is kink unstable. The nonlinear state with V just above Vc has a large volume of flux
surfaces, with rotational transform provided by the helical kinking of the column. As V increases the kink
becomes stronger, the tori are destroyed, and the field lines exhibit chaotic scattering. The distribution
of field line lengths L, related to confinement and parallel current density, is studied. At larger V or
larger Lundquist number S, a limit cycle appears.

PACS numbers: 52.65.Kj, 05.45.-a, 52.55.Hc
Electrostatic helicity injection is a method which has
been successful in forming and sustaining spheromak con-
figurations [1–5]. In this scheme, current is driven across
two electrodes linked by magnetic flux. The most com-
monly used design is that of the coaxial gun spheromak,
in which the electrodes form a magnetized Marshall gun
[1,2]. A related design is that of the flux core spheromak,
in which the electrodes are at opposite ends of the device
[6–9]. In this Letter we study spheromak formation and
sustainment in the latter case and idealize the geometry as
a cylinder of finite length with magnetic flux through the
end caps, which are held at a fixed potential V .

In spheromak sustainment, three dimensional (3D) pro-
cesses must occur: by the Cowling theorem [10,11] an
axisymmetric spheromaklike state with a volume of nested
flux surfaces cannot be maintained against resistive decay.
Therefore spontaneous nonaxisymmetric processes in the
plasma must play a crucial role in the sustainment process.
This Letter describes the first detailed computations of dy-
namo activity in electrostatically driven spheromaks.

We model the plasma by resistive magnetohydrodynam-
ics (MHD) in three dimensions with finite viscosity and
zero b. Specifically, the equations integrated are

r�≠t �y 1 �y ? = �y� � �j 3 �B 1 m=2 �y , (1)

�E 1 �y 3 �B � h �j (2)

plus Faraday’s law. These equations are integrated using
the NIMROD code [12]. The profile of the magnetic field
in the perfectly conducting electrode surfaces takes two
forms, either uniform field or a field distributed according
to the 1D paramagnetic pinch profile [13] for the potential
V . (The boundary conditions are Dirichlet on �y and on
the normal component �B ? �n, Neumann on �n 3 �B.) The
uniform density is not evolved: Its magnitude determines
the Lundquist number, but its profile does not play an im-
portant role for b � 0. The dimensionless parameters are
(i) H�R, the cylinder height relative to the radius, (ii) the
0031-9007�00�85(21)�4538(4)$15.00
Lundquist number S, the ratio of the resistive time tr to the
Alfvén time, and (iii) Va � trV�Ce, the potential scaled
to the electrode flux Ce and tr . The resistivity and kine-
matic viscosity are equal. The results show no qualitative
differences between the two models for electrode flux dis-
tribution. These effects and those of varying the dissipa-
tion coefficients, as well as convergence with respect to
grid and time step, are discussed in Ref. [14].

For low Va, the time asymptotic state is a 2D paramag-
netic pinch, i.e., an axisymmetric Ohmic equilibrium. All
field lines in this 2D paramagnetic pinch state connect the
electrodes, and there are no closed flux surfaces, in agree-
ment with the Cowling theorem.

For S � 1000, H�R � 1, the paramagnetic pinch pro-
file is found to be kink unstable (in the presence of re-
sistivity) for Va . 28. This value corresponds to a twist
in the field lines between electrodes Du � 3.3 near the
z axis and Du � 6.0 for r�R � 1�3. The unstable mode
is similar to kinks in RFP (reversed field pinch) and toka-
mak geometry, except that the threshold Va, which depends
strongly on H�R, is influenced by line tying [15,16]. The
observed nonlinear time asymptotic state is a steady state
kinked pinch. A Poincaré surface of section of the field
lines for a case with Va � 31, S � 1000, H�R � 1 and
with flux distributed according to the paramagnetic pinch
is shown in Fig. 1. Figure 1 shows a large area of field
lines lying on invariant tori or flux surfaces. In this and
typical cases for Va just above the kink instability thresh-
old, there is no separatrix separating these field lines from
those directly connecting the electrodes. Rather, there is
a small class of chaotic field lines connecting the elec-
trodes. Because these field lines intersect the electrodes,
the dynamics is described by chaotic scattering [17]. The
length L of the field lines connecting the electrodes, sim-
ilar to the time delay function of chaotic scattering, is
shown in Fig. 2. For x , 20.5, x . 0.4 structures sim-
ilar to the fractals associated with chaotic scattering are
observed. However, this behavior is in a region where Bz
© 2000 The American Physical Society
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FIG. 1. Poincaré surface of section f � 0 for the weakly
driven case, with Va � 31, S � 1000, H�R � 1, and with dis-
tributed electrode flux. Field lines encircled by the flux surfaces
exit rapidly; the three points near r � 0.45, z � 0.8 exit after
one intersection.

on the electrode is very small, so that the fraction of field
lines exhibiting chaotic scattering, measured by the flux,
is very small. Because of the existence of flux surfaces,
the dynamics has characteristics of nonhyperbolic chaotic
scattering [17,18]: The field line lengths have evidence of
the “castlelike” structure seen in Ref. [19].

These steady state solutions are 3D Ohmic equilibria
which have a large region of good flux surfaces. In this
sense they are similar to the helically symmetric Ohmic
equilibria which can exist in RFP geometry [11]. However,
since the flux surfaces are not connected to the electrodes,
there is no net current driven on them: Consider the flux
surface average of the parallel projection of Eq. (2) for
time independent fields,

�hlB2� � 2� �B ? =F� � 0 , (3)

where F is the electrostatic potential, �· · ·� is the flux sur-
face average, and l � �j ? �B�B2. A similar relation has
been derived based on magnetic helicity arguments [20].
Perpendicular forces due to viscous and inertial terms are
present, although relatively small, and the closed flux sur-
faces therefore have small perpendicular currents �j� bal-
ancing these forces. The Pfirsch-Schlüter current described
by l and associated with �j� averages to zero in the sense
of Eq. (3). On each open field line, similar field line inte-
gration leads to

V �
Z

hlB2dl�B � L�hlB�fl , (4)

where the integral is between the footpoints on the two
electrodes, L is the field line length, and �· · ·�fl is the field
line average. Since the resistivity h is constant except
very near the wall, Eq. (4) indicates that the field line
average of the parallel current density lB scales as 1�L.
Most of the field lines connect directly to the electrodes
without encircling the flux surfaces (tori), so that L �
H. However, for the few long field lines which encircle
the region of tori several times, L is large and �lB�fl is
small. Typical values of l for field lines connected to the
electrodes are indeed observed to be many times larger than
those in the closed flux surface region. If the perpendicular
forces (viscous and inertial) in Eq. (1) are negligible, then
the current density is force free, i.e., �j � l �B, and l is
constant on the field lines. In this case Eq. (3) reduces
to l � 0 in the region of good flux surfaces (and on the
magnetic axis). Similarly, if �j� � 0 on the open field
lines, Eq. (4) gives V � lL�hB�fl .

A region of closed flux surfaces with a magnetic axis
(an elliptic closed field line) as described above can exist
with zero average current density (zero current density
if �j� � 0) because the fields are nonaxisymmetric. The
rotational transform on the flux surfaces is caused by the
helical nature of the current density in the central column
rather than in stellarator windings [21].

We have computed the safety factor q for the actual
fields of Fig. 1 and for the n � 0 part of the fields. The
actual q is of order 10 and larger than that computed from
the n � 0 fields by about a factor of 2. That is, there is
very little poloidal flux on closed surfaces in this case, and
the axisymmetric fields in fact overestimate this flux.

FIG. 2. Field line length L (a) as a function of x on the bottom
electrode at y � 0, with Bz along the same curve, for the case
of Fig. 1; (b) expansion of the scale around x � 0.56.
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As Va is increased, the amplitude of the kink increases.
Poincaré surfaces of section for such cases show that the
flux surfaces begin to disappear as this happens. We show
in Fig. 3 the contours of the n � 0 component of c �
rAu for a case with Va � 150, S � 5000, H�R � 1.5,
and with uniform field through the electrodes. The flux
amplification, defined as Ca�Ce, where Ca is the n � 0
poloidal flux in excess of Ce, is 257%. In contrast, the
flux amplification factor for the case of Figs. 1 and 2 is
3%. There is a large class of short field lines that connect
fairly directly to the electrodes, and other longer field lines.
The length L can again be described by chaotic scattering.
The map of the field lines from the bottom surface z �
0 to z � H�2 and to z � H is shown in Fig. 4 for the
case of Fig. 3. Because Bz is uniform for this case, the
initial points are picked randomly on z � 0 and coded by
initial radius. The intersections with z � H�2 have empty
regions showing the presence of a very small region of
tori and the curve Bz � 0 �r � 0.7�. The apparent fractal
nature of the map, with regions separated by the stable
manifolds of the chaotic set, is evident [21]. A plot of L as
a function of position on z � 0 is shown in Fig. 5. Regions
of smooth behavior where L has minima, separated by the
(fractal) stable manifold of the chaotic set, where L !
`, are seen. In Fig. 6 we show the distribution function
f�L� for this case. There are several peaks in Fig. 6 most
evident for short values L , 50. These peaks are traced
to the relative minima of L in regions separated by the

FIG. 3. Contours of axisymmetric �n � 0� poloidal flux for
a strongly driven case with Va � 150, S � 5000, H�R � 1.5
and with uniform magnetic field through the electrodes; Ce and
Ca are, respectively, the electrode flux and the amplified flux in
excess of Ce.
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stable manifold. There is also evidence of an exponential
tail for 30 , L , 200. There is a tail for larger L, but
it is not possible to conclude that it obeys a power law
[22]; this is consistent with the smallness of the region of
closed flux surfaces in Fig. 4. As shown in Fig. 6, there
is a fairly large number of long field lines L ¿ H, which
may provide some thermal insulation from the electrode
surfaces. However, as discussed above, these long field
lines have the lowest value of current density �lB�fl and,
therefore, the lowest Ohmic heating and are intermittently
mixed with the short field lines.

For higher Va or for higher S a periodic limit cycle
appears. There are two distinct parts to the cycle, leading
to a sawtoothlike nature. For limit cycle cases, there are
few or no invariant flux surfaces.

The spheromak concept is appealing and potentially use-
ful because the magnetic configuration is spontaneously
created by the plasma dynamics. The 3D MHD activity
creates new structures which break the axisymmetry of the
externally applied fields; in this sense a spheromak is a
self-organized confinement device. In the low V cases the
spontaneously formed structure or pattern is the toroidal
region of good flux surfaces. For the strongly driven cases,
the self-organized structure is related to the chaotic scatter-
ing of the open field lines. In an RFP, on the other hand,
the field lines are thought to be chaotic [23] but have a
bounding flux surface at the wall. In such cases, essen-
tially all field lines are equivalent. In chaotic scattering
this is far from the case, as illustrated by the distribution
f�L� in Fig. 6.

These self-organized structures need to be optimized
with regard to confinement and heating. The weakly driven
cases with good flux surfaces have the possibility of con-
finement, but there is no Ohmic heating by net current
density in the closed flux surface region. Furthermore,

FIG. 4 (color). Map of field lines for the case of Fig. 3 from
the bottom to z � H�2 and to z � H.
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FIG. 5 (color). Field line length as a function of position (a) on
lower electrode for the case of Fig. 4; (b) blowup of scale around
x � 20.5, y � 20.5.

the safety factor q is typically very large, and, therefore,
effects related to variation of j �Bj on flux surfaces, e.g.,
neoclassical transport, are very large. It is possible that fur-
ther optimization to increase the amount of poloidal flux is
possible. For example, the distribution of the flux through
the electrodes or the electrode geometry could be varied.
Bootstrap current should help in this regard, and heating
could be provided by rf.

The strongly driven cases have no appreciable volume of
flux surfaces, and the longest field lines have the smallest
average current density and thus weak Ohmic heating. It is
possible that with moderate driving there are small areas of
flux surfaces, with the field lines coming near these areas
being long enough to give some confinement along field

FIG. 6. Distribution f�L� of field line lengths for the case of
Fig. 4.
lines. For such cases, the confinement may be similar
to typical RFPs, in which the chaos can be characterized
by a relatively small field line diffusivity. The strongly
driven cases are the most similar to spheromak experiments
to date, which have flux amplification factors of several
hundred percent. Based on the relatively good confinement
of decaying spheromaks [24] and simulations showing the
existence of a volume of magnetic surfaces for decaying
cases [25] it may be possible to optimize in this range by
pulsing the applied voltage V periodically in time.
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