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The growth rates of the deceleration-phase Rayleigh-Taylor instability for imploding inertial confine-
ment fusion capsules are calculated and compared with the results of numerical simulations. It is found
that the unstable spectrum and the growth rates are significantly reduced by the finite ablation flow at
the shell’s inner surface. For typical direct-drive capsules designed for the National Ignition Facility, the

unstable spectrum exhibits a cutoff for [ = 90.
PACS numbers: 52.35.Py, 47.20.-k, 52.40.Nk

In inertial confinement fusion (ICF) [1], a spherical shell
of cryogenic deuterium and tritium (DT) filled with DT gas
is accelerated by direct laser irradiation or x rays produced
by a high-Z enclosure (hohlraum). The laser pulse is de-
signed to drive multiple shocks [1-3] through the shell and
to accelerate it to the implosion velocity required for igni-
tion. The time interval corresponding to the shell accelera-
tion is commonly referred to as the “acceleration phase.”
The shocks set the shell on the desired adiabat and merge
into a single shock before reaching the shell’s center. Such
a single shock is reflected off the center and impulsively
slows down the incoming shell. Additional shocks may be
reflected off the shell and its center until the lower-density
material enclosed by the shell (the so-called “hot spot”)
reaches a sufficiently large pressure to slow down the shell
in a continuous (not impulsive) manner. Such a continu-
ous slowing down of the shell up to the stagnation point
occurs over a period of a few hundred picoseconds and
is referred to as the continuous “deceleration phase.” Fig-
ure 1 shows the time evolution of the deceleration g of a
shell designed for direct-drive ignition [3] on the National
Ignition Facility (NIF). The time ¢+ = O represents the stag-
nation point, and the continuous deceleration starts at about
200 ps before stagnation. During the deceleration phase,
the hot-spot pressure, density, and temperature increase un-
til reaching the ignition conditions determined by tempera-
tures and areal densities exceeding 10 keV and 0.3 g/cm?,
respectively [1]. It is well known that the shell’s outer
surface is unstable to the Rayleigh-Taylor (RT) instability
during the acceleration phase; however, because of mass
ablation, the instability growth rates are significantly re-
duced [4]. The thickness of ICF shells is chosen to prevent
the shell from breaking up when the RT bubble amplitude
equals the shell thickness. Even when the shell integrity
is preserved during the acceleration phase, the hot-spot ig-
nition can be quenched [5] by the deceleration-phase RT
instability. The latter is the instability of the shell’s inner
surface that occurs when the shell is decelerated by high
pressure building up inside the hot spot. The deceleration
RT causes the cold shell material to penetrate and cool the
hot spot, preventing it from achieving ignition conditions.
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Typical seeds for the deceleration-phase RT are the surface
nonuniformities that feed through the shell from the outer
surface during the acceleration-phase instability.

It is common wisdom that the deceleration-phase RT is
classical [6] and all modes are unstable. The finite density-
gradient scale length [7] reduces the instability growth
rates which can be approximated by the classical fitting
formula [1]
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where L is the shell’s density-gradient scale length and & is
the perturbation wave number approximately equal to /R
with R being the hot-spot radius and / the mode number.
Observe that Eq. (1) indicates that all modes are unstable
with the fastest-growing modes having short wavelengths
(kL > 1) and growth rates ygec(kL > 1) = +/g/L. As
shown in Ref. [7], the finite density gradient scale length
is produced by the thermal conduction inside the hot spot.

In this Letter, we show that mass ablation from the
shell’s inner surface significantly reduces the deceleration
RT growth rates, leading to much lower growth rates for
short wavelength modes than predicted by Eq. (1) and to
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FIG. 1. Time evolution of the inner shell surface deceleration
for a direct-drive NIF capsule [3]. Time ¢ = 0 is the stagna-
tion time.
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a cutoff in the unstable spectrum. Mass ablation is caused
by the heat flux leaving the hot spot and depositing on
the shell’s inner surface. We have calculated the ablation
velocity and the shell’s density-gradient scale length dur-
ing the deceleration phase. Then, using the RT theory of
Ref. [8], we have calculated the growth rates and com-
pared them with the results of numerical simulations of an
imploding direct-drive NIF-like capsule. We find that the
cutoff mode number for the deceleration-phase RT is ap-
proximately /oyiorf = 90.

The NIF-like capsule [3] is a 345 um thick shell of DT
ice with an inner radius of 1350 wm driven by a 9.3 ns,
1.5 MJ laser pulse, which sets the shell on a @ = 3 adia-
bat. The shell is filled with DT gas with a density of
2 X 107% g/cm’.

We have used the 1D code LILAC [9] output at 9.5 ns
characterizing the beginning of the coasting phase, as
the input for a high-resolution 2D Eulerian hydro code
[10], solving the single-fluid mass, momentum, and
energy equations, which include Spitzer conduction, local
alpha deposition, and bremsstrahlung losses on a very
fine grid. The high resolution is needed to correctly
simulate the growth of short-wavelength modes. Aside
from the bremsstrahlung losses, the code solves the
same single-fluid equations on which the theory is based,
providing a robust check of the theoretical results. The
one-dimensional results have also been compared with
the 1D code LILAC showing good agreement during the
deceleration phase until the onset of the burn wave. The
RT evolution is investigated by introducing a small-
amplitude 2D perturbation of the hydrodynamic variables
at about 200 ps before stagnation when the continuous
deceleration phase begins.

The first step of the analysis concerns the calculation
of the ablation velocity on the shell’s inner surface sur-
rounding the hot spot. The thermal energy escaping the
hot spot via thermal conduction is absorbed by the shell
material, which gains internal energy and ablates off the
shell into the hot spot. The hot-spot evolution is governed
by the mass, momentum, and energy conservation equa-
tions. The analysis is greatly simplified if the equations of
motion are written in the Lagrangian form:
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where ¢, = 3/2A is the specific heat at constant vol-
ume, A = m;/(1 + Z), m; and Z are the average ion
mass and atomic number, respectively (Z = 1 for DT),
k(T) = koT/? is the Spitzer thermal conductivity, E, =

3.5 MeV, 0 is the absorbed-alpha-particle fraction, and
{ov) is the fusion reaction rate. In the simulations, the
absorbed fraction is set equal to unity.

The independent variable m is proportional to the mass
within the radius r

m = frp(x,t)xzdx. (5)
0

Equation (4) has been derived by using the standard
ideal gas equation of state P = pT /A and by neglecting
bremsstrahlung losses which are typically smaller than
the heat conduction losses. To solve the conservation
equations, we adopt the subsonic flow ordering, which
represents a good approximation after the shock tran-
sient. We let t ~ Ry,/Cs (or t ~ Rys/U), ¥ ~ Ry, and
U ~ €Cy, where Ry is the hot spot radius, and € < 1
represents the flow Mach number. To leading order in
€, Eq. (3) yields a uniform pressure so that P =~ P(r).
The density in the mass and energy equations can
be eliminated by using the equation of state, and the
fusion rate can be approximated with a quadratic power
law (ov) = s,T? as long as 4 < T <20keV. At
temperatures below 4 keV, the alpha heating is smaller
than the radiation losses. The energy equation can be
greatly simplified by using Eq. (2) to express the radius
in terms of the temperature,
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and by defining new dependent (V) and independent (7))
variables as shown below:
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where D, = 0.0250E,s,, mo is a constant, and ¢t = 1
represents the beginning of the deceleration phase. Using
the new variables, a straightforward manipulation leads to
the following simple form of the energy equation:
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A self-similar solution of Eq. (9) can be found by setting
W = g 2VVF(¢) and € = am/n?7, where & and F(¢)
are dimensionless and a is a constant with the dimensions
of 1)2/ 7/m. The self-similar form of Eq. (9) is the follow-
ing ordinary differential equation:
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At the hot-spot—shell interface, the temperature is consid-
erably less than the central hot-spot temperature. Since
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the temperature is proportional to dF/dé, one can ne-
glect corrections of the order of Thei1/Thotspot(0, 1) and
look for a solution of Eq. (10) satisfying dF/d¢é = 0 at
the hot-spot radius. The function F is proportional to
the internal energy inside the hot spot and therefore posi-
tive by definition. The solution of such an equation can
be found by numerical integration from the initial condi-
tions F(0) = 0 and F’(0) = 1. The solution of Eq. (10)
is shown in Fig. 2 indicating that dF /d & (and therefore
T) vanishes at &g = 1.23 and F(&p) = 0.70. Defining the
hot spot as the region with & = & leads to the following
expression of the hot-spot mass:

My = 4mmys = 4éon™/a. (11)

The constants a and 7 [see Eq. (8)] can be determined
from the initial conditions at the beginning of the decelera-
tion phase ¢t = ty by using Egs. (6), (7), and (11). The
ablation velocity at the shell’s inner surface follows by
noticing that the mass ablation rate off the shell M, must
equal the rate of change of the hot-spot mass My,. Given
the hot-spot radius Ry and the shell density pgpeyr, the
ablation rate is M = 47 RE, Pshett Va, Where V, is the ab-
lation velocity. Thus setting M = Mhb yields the ablation
velocity

V= s (12)

47 Riys Pshell

where M hs can be determined from Eq. (11). Then, using
the m derivative of Eq. (7) to relate T and 7), the ablation
velocity can be written in terms of standard hot-spot and
shell parameters:

12 50 AroTns(0,1)°2
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where both the central hot-spot temperature and radius
depend only on the hot-spot pressure. Using F’'(0) =

&y = 1.23, F(&y) = 0.70, and standard ICF units, the ab-
lation velocity can be written in the following simple form:
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FIG. 2. Functions F(£) and F'(£) obtained from the numerical
solution of Eq. (10).
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where RPS, Ths and APS are the hot-spot radius, cen-
tral temperature, and Coulomb logarithm, and p*"°!! is the
shell’s density. Figure 3 shows the temporal evolution of
the ablation velocity for the direct-drive NIF capsule un-
der consideration obtained from Eq. (14) and calculated
directly in the code using A" = 5. In the simulations, the
ablation velocity is defined as the difference between the
hydro and the hot-spot radius velocity near the shell peak
density. Using the continuity of mass flow at the point 74
on the shell’s inner surface where the density is ¢ times
the peak density, one finds V% = ¢[u(rg) — 74]. Such
a definition of the ablation velocity (which is exact for a
sharp interface with a large density jump) is almost inde-
pendent of ¢ and represents a good approximation as long
as the density profile is steep at the shell’s inner surface.
In addition to the ablative stabilization, the RT growth
rates are reduced by the well known finite density-
gradient effects. Since the ablative flow at the shell’s
inner surface is subsonic, the minimum density-gradient
scale length can be estimated using the isobaric model

[11] result L,, = 3.2AxoT a1/ p "V, which combined
with Eq. (13) yields

Ly = 6.8Ru[AP(1)/ psnenTas (0, )72, (15)

where P(t) is the hot-spot pressure. Following the isobaric
model, the term AP(t)/psnen in Eq. (15) represents the
shell temperature at its inner surface. Figure 4 shows the
temporal evolution of L, calculated from Eq. (15) and
directly from the simulations.

The growth of large / modes can be determined using
the planar results of Ref. [8] derived for the acceleration-
phase RT. The ablative RT theory of Ref. [8] can be
applied as long as the peak of the shell’s density is located
on its (ablating) inner surface. This occurs starting from
about 150 ps before stagnation in the NIF-like capsule
under consideration and pghel = Ppeak should be used
in Egs. (14) and (15). Before that time, the deceleration
and the growth rates are quite low, and the instability
is a combination of ablative and classical RT as the
peak of the density lies inside the shell at some distance
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FIG. 3. Evolution of the ablation velocity at the inner shell
surface of a NIF-like capsule as predicted by Eq. (14) (dashed
line) and the result of numerical simulations (solid line).
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FIG. 4. Evolution of the density-gradient scale length at the
inner shell surface of a NIF-like capsule as predicted by Eq. (15)
(dashed line) and the result of numerical simulations (solid line).

(~5-15 um) from the ablation front. More details on
the RT evolution during this earlier stage will be given
in a forthcoming publication. For a NIF-like capsule
during the continuous deceleration phase before stagna-
tion (g) = 3100 um/ns>, (V,) = 17 um/ns, {(L,) =
1.5 pm, Rys = 50-70 um leading to a Froude number
Fr =~ 0.5, where Fr = V2/gLg and Ly = 0.12L,,. Using
Eq. (23) and Fig. 6 of Ref. [8], we determine the appro-
priate growth-rate formula

_ k(g
y = 0.91/71 T 1.4k(V,), (16)

where k = [/Rys for large [’s. Figure 5 compares
the unstable spectrum calculated using Eq. (16) with
Rys = 60 pm, the classical RT spectrum without ablation
[Eq. (1) with L = L,,], and the results of numerical simu-
lations. Except for [ = 2,4 (open dots), the numerical
growth rates are calculated in the 100-ps time interval
before stagnation. The simulations of modes [ = 2,4
show a clear exponential growth only after the shell stag-
nation time, and their numerical growth rate is calculated
in the 50 ps interval after stagnation. It is important
to observe that the planar theory agrees well with the
numerical results only for / = 20. Low [/ modes seem
to grow faster (almost classically) than predicted by
Eq. (16), indicating that convergence effects may reduce
the ablative stabilization at low [. Furthermore, Fig. 5
shows that the finite ablation velocity off the shell’s inner
surface induces a cutoff in the RT unstable spectrum,
suppressing short-wavelength modes with / > 90.

In conclusion, we have shown that the ablative flow off
the shell’s inner surface plays a crucial role in reducing
the growth rate and suppressing short-wavelength modes
in the deceleration-phase RT instability. We have calcu-
lated the ablation velocity and the density gradient scale
length in terms of standard hot-spot parameters. Then us-
ing the theory of Ref. [8], we have determined the growth
rate formula. Detailed numerical simulations have con-
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FIG. 5. Growth rate vs mode number for the deceleration-
phase RT of a NIF-like capsule as predicted by Eq. (16) (solid
line), Eq. (1) with L = L,, (dashed line), and the results of nu-
merical simulations (dots).

firmed the theoretical results and have shown RT suppres-
sion at short wavelengths. If nonlocal alpha deposition is
included, we expect additional stabilization after stagna-
tion as the alpha heating of the shell’s inner surface leads
to a higher ablation velocity.

Part of this work was carried out when one of the
authors (R.B.) was on a sabbatical leave at the CEA
center in Bruyeres le Chatel (France). Special thanks to
Dr. C. Cherfil and Dr. P. A. Holstein of the CEA; Dr. V.
Goncharov, Dr. M. Umansky, and Dr. R.L. McCrory of
LLE for many useful discussions; and Dr. M. Rosen of
LLNL for suggesting the stabilizing role of ablation dur-
ing the deceleration-phase RT. This work was supported
by the U.S. Department of Energy under Cooperative
Agreement No. DE-FC03-92SF19460.

[1] J.D. Lindl, Inertial Confinement Fusion (Springer, New
York, 1998).

[2] T.R. Dittrich et al., Phys. Plasmas 6, 2164 (1999).

[3] LLE Review, Laboratory for Laser Energetics, University
of Rochester, Rochester, NY, Vol. 79, p. 121, 1999.

[4] S. Bodner, Phys. Rev. Lett. 33, 761 (1974); H. Takabe
et al., Phys. Fluids 28, 3676 (1985); J. Sanz, Phys. Rev.
Lett. 73, 2700 (1994); R. Betti et al., Phys. Plasmas 3,
2122 (1996).

[5] R. Kishony, Ph.D. thesis, Tel Aviv University, 1999.

[6] F. Hattori, H. Takabe, and K. Mima, Phys. Fluids 29, 1719
(1986).

[7] M. Murakami, M. Shimoide, and K. Nishihara, Phys. Plas-
mas 2, 3466 (1995).

[8] R. Betti ef al., Phys. Plasmas 5, 1446 (1998); V. Gon-
charov, Ph.D. thesis, University of Rochester, 1998.

[9] J. Delettrez and E. B. Goldman, LLE Report No. 36, 1976;
also National Technical Information Service document
DOE/SF/19460/118, Springfield, VA 22161.

[10] V. Lobatchev, Ph.D. thesis, University of Rochester, 2000.
[11] H.J. Kull, Phys. Fluids B 1, 170 (1989).

4525



