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Free-Electron Laser without Inversion: Gain Optimization and Implementation Scheme

Alexander I. Artemiev,1 Mikhail V. Fedorov,2 Yuri V. Rostovtsev,1 Gershon Kurizki,3 and Marlan O. Scully1

1Department of Physics, Texas A & M University, College Station, Texas 77843-4242
2General Physics Institute, Russian Academy of Sciences, 38 Vavilov Street, Moscow, 117942, Russia

3Chemical Physics Department, Weizmann Institute of Science, Rehovot, 76100, Israel
(Received 17 August 2000)

We consider a scheme of two noncollinear wigglers with an intermediate magnetic drift region, con-
stituting a free-electron laser without inversion (FELWI). Two mechanisms of phase shifts in the drift
region between the wigglers owing to a series of magnetic lenses can give rise to FELWI: velocity- and
angle-dependent shifts. An appropriate combination of these shifts is shown to provide the conditions
for amplification without inversion. The phase shifts optimizing the gain are found. A specific scheme
for the drift region is suggested.

PACS numbers: 41.60.Cr, 52.75.Ms
The idea of free-electron lasers without inversion
(FELWI) was suggested and discussed in a series of pa-
pers [1–5]. It is well known that in the usual free-electron
laser (FEL) with a magnetic wiggler light amplification
is efficient in the vicinity of the resonance frequency
vres � 2g2ckw or, for a given light frequency v, at a
resonance value of the initial relativistic factor of the
electron gres � v�2ckw , where kw � 2p�l0 and l0 is
the period of the wiggler. Deviations from the resonance
conditions are characterized by the resonance detuning

V � v
y0 2 yres

c
, (1)

where y0 is the initial electron velocity and yres is the
resonance velocity, corresponding to gres. In dependence
on V, the gain G of the usual FEL is an antisymmetric
function, such that G�V� . 0 for V . 0, G�V� , 0 for
V , 0, and

R
G�V� dV � 0.

In the “hot-beam” regime the gain G is averaged over a
wide distribution function f�´� (where ´ is the initial elec-
tron energy) to give G ~ f 0�´res� ~ 1��D´�2 in the case
of usual FEL and G ~ f�´res� ~ 1��D´� in the case of
FELWI, where D´ is the width of the distribution f�´�.
Hence, in FELWI amplification can take place at any po-
sition of ´res with respect to the mean electron energy ´,
whereas in the usual FEL amplification takes place only
if ´res is located on a rising slope of f�´�. This is a clear
distinction between amplification without and with inver-
sion. The described different dependence of G on D´ in
FEL and FELWI, ~ 1�D´2 and ~ 1�D´, respectively, in-
dicates the main potential advantage of FELWI: in the case
of beams with a wide distribution function f�´� the gain of
FELWI is expected to be larger than that of a normal FEL.

A specific scheme of FELWI suggested and considered
in Refs. [1–5] included two identical wigglers and some
device between them. This device was assumed to give rise
to a velocity-dependent phase shift Dw�y0�. The phase
of a slow electron motion in FEL is determined as w �
�kL 1 kw�z 2 vt, where kL is the wave vector of the
wave amplified. In Refs. [1–5] the phase shift received
0 0031-9007�00�85(21)�4510(4)$15.00
by electrons in the drift region between the two wigglers
was assumed to have a stepwise form

Dw �

Ω
p 2 VT , V , 0 ,
2VT , V . 0 , (2)

where T is the time of flight of an electron through a single
wiggler. Such a phase shift does provide mostly positive
gain G�V�, as required for FELWI, but possibilities of its
practical implementation are not clear.

Moreover, it was realized [4] that a simple one-
dimensional scheme of FELWI cannot provide the
gain with the desired features [mostly positive andR

G�V� dV fi 0]. The reason is the difference between
the electron initial velocity y0 and its velocity in the drift
region y or, in other words, the difference between the
initial and drift-region detunings V and eV, where

eV � v
y 2 yres

c
� V 1 z , (3)

z � v
y 2 y0

c
�

v

g2

D´

´
, (4)

and D´ is the energy gained by an electron after crossing
the first wiggler. An addition of the term z (4) to the
detuning V in the expression (3) for eV changes the gain of
a two-wiggler system with an arbitrary phase shift Dw� eV�
in such a way that the integral

R
G�V� dV becomes zero.

To overcome the deadlock, it was suggested [4] to use
a noncollinear (two-dimensional) scheme with the wave
vector of light kL directed under a small angle u ø 1 to
the z axis (the wiggler’s axis) and lying in the xz plane (in
a geometry with the wiggler’s magnetic field parallel to �x
and electric field of a light wave parallel to �y). In such
a scheme, instead of (2), the phase shift considered in [4]
was taken in the form

Dw �

(
p 2 eVT , V , 0 ,
2 eVT , V . 0 .

(5)

Such a phase shift does provide a FELWI gain with a
nonzero integral over the detuning, but its realization looks
© 2000 The American Physical Society
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even more difficult than that of the phase shift in the
form (2).

In this Letter we discuss different types of phase shifts,
linear in the detuning, which optimize the FELWI gain.
In principle, linear shifts are much more convenient for
practical implementation. In the noncollinear scheme, we
discuss two physical mechanisms providing phase shifts

depending on eV and on the field-induced angular spread-
ing of electrons in the drift region. We show that a
combination of these two mechanisms can be used to com-
pensate the contribution to the total phase shift of the term
z in eV (3) and optimize the FELWI gain. Finally, a specific
scheme with combining magnetic lenses and turning mag-
nets in the drift region is suggested to provide the FELWI
gain with the required features.
As a first step, let us ignore the mentioned above differ-

ence between V (1) and eV (3).
Let us assume that the phase shift Dw is a linear function

of the detuning V,

Dw � C1 2 C2x , (6)

where x � VT and C1 and C2 are constants to be
found from the condition that Dw (6) maximizes
the integral

I�C1, C2� �
Z 1`

2`
dx g�x� . (7)

In Eq. (7), g�x� is the dimensionless gain of Ref. [4]
[Eq. (26)]:
g�x� �
2�1 2 cos�x�� 1 2 cos�x 1 Dw�x��

x3 2
cos�Dw�x�� 1 cos�2x 1 Dw�x��

x3

1
sin�x 1 Dw�x�� 2 sin�2x 1 Dw�x�� 2 sin�x�

x2 . (8)
Such an optimization shows that the maximal value of the
integral I (7) is reached at C1 � p�2 and C2 � 1.04 or

Dwopt � p�2 2 1.04x � p�2 2 1.04VT

� p�2 2 VT . (9)

In Fig. 1 the gain gopt corresponding to Dwopt (9) is
plotted in its dependence on the dimensionless detuning
x � VT . The maximal integral Iopt �

R
gopt�x� dx �

3.1 is approximately 3 times larger than the same integral
for g�x� found for Dw of Eq. (2).

Owing to the difference between V (1) and eV (3), the
realizable velocity-dependent phase shift can be linear ineV rather than V,

Dw ! gDw � C1 2 C2
eVT � Dw 2 C2zT , (10)

where, as previously, Dw is given by Eq. (6) and z is given
by Eq. (4). The arising correction to Dw, proportional to
z , gives rise to a correction to the gain g�x� (8). In the
weak-field approximation this correction can be calculated
explicitly to give

eg�x� 2 g�x� � 2
C2

2x2 �2 sin�Dw�x� 1 x�

2 sin�Dw�x� 1 2x�
2 sin�Dw�x��	 . (11)

It can be shown both analytically and numerically that

eI�C1, C2� �
Z 1`

2`
dx eg�x� � 0 (12)

at any C1 and C2 in Eqs. (6) and (11).
The correction to the phase shift Dw arising from the

difference between the electron initial velocity and its
velocity in the drift region modifies the gain of a collinear
two-wiggler FEL in such a way that the total square
under the curve eg�x� becomes zero. This cancellation oc-
curs for any choice of parameters determining the velocity-
dependent phase shift in the drift region. The gain eg�x� is
similar to that of an optical-klystron-type FEL rather than
to FELWI. To return to FELWI, we have to find a way
to compensate somehow the contribution to the gain from
the second (additional) term on the right-hand sides of
Eqs. (10) for gDw. It is shown below that this goal can be
reached in a noncollinear scheme of a two-wiggler FEL.

In the noncollinear scheme of FEL an electron initially
moving along the z axis acquires a transverse velocity
yx�t� obeying the equation

�yx �
u

gmc
�́ (13)

[to be compared with Eq. (14) of Ref. [4] ]. In accordance
with the definition of the parameter z (4), Eq. (13) yields
the following expression for the velocity yx�T � acquired
by an electron at the exit from the first wiggler:

y�1�
x �T � �

u

2kw
z . (14)

This result shows that at the exit from the first wiggler
an initially perfectly collimated beam of electrons acquires
a finite angular width, which can be characterized by the
angle a between the velocity v�T � and the z axis,

a �
y

�1�
x

y0
�

u

2ckw
z . (15)

Hence, the parameter z (4) determines both the difference
between the detunings eV and V (3) and the field-induced
angular divergence of the electron beam at the exit from the
4511
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FIG. 1. Optimal gain vs detuning.

first wiggler (15). This double role of the parameter z (4)
is the key point in an estimate of realizability of FELWI.
In principle, the gain close to the optimal one [Fig. 1 and
Eq. (8)] can be achieved if a device in the drift region is
capable of providing a phase shift,

Dwtot � gDw 1 Dw0, (16)

where gDw is given by Eq. (10) and Dw0 is proportional to
the angle a (15) under which electrons move at the exit
from the first wiggler,

Dw0 � Aa � A
u

2ckw
z . (17)

If the proportionality constant in this equation equals

A � 2ckwT�u � 4pN�u (18)

(where N � L�l0 is the number of periods in a wiggler),
the terms proportional to z in gDw and Dw0 compensate
each other to give

Dwtot � Dwopt (19)

and, correspondingly, gtot�x� � g�x� (8). In such a case
the gain of all the system coincides with that of FELWI
with ignored difference between the detuning in the
drift region eV and the initial detuning V [Fig. 1 and
Eq. (8)]. In the following a construction is described
which, in principle, looks capable of satisfying the
formulated conditions.

The scheme under discussion is shown in Fig. 2. The
device includes a focusing magnetic lens (FL) and three
symmetrically located turning magnets TM1 TM5. Turn-
4512
ing magnets TM1 and TM5 are assumed to be made of
a couple of magnetic plates of different polarity, with the
magnetic field directed parallel or antiparallel the y axis.
Two angular parameters a0 and a1 characterizing turning
magnets TM1 and TM5 are the angle a0 between the plane
of magnetic plates and the x axis and the turn angle a1,
i.e., the angle between electron trajectories before and af-
ter crossing the turning magnet.

The most important parts of the device are indicated
in Fig. 2 as A, B, C, and D (plus the mirror reflection
of the regions B, C, and D after TM3). Under proper
conditions, the phase shifts gDw (10) and Dw0 (17)
are provided by the regions A 1 B 1 C and C 1 D,
correspondingly.

As mentioned above, the beam exiting from the wiggler
w1 has an angular divergence a (15). The focusing lens
FL transforms this angular divergence into a distribution
of partial beams parallel to the z axis over the transverse
coordinate x with x � l0a. Two partial beams shown in
Fig. 2 in region B correspond to a � 0 and a fi 0. Each
of these partial beams consists of electrons with various
velocities y. As a and x are small, the dispersion of the
focusing lens FL can be ignored whereas the dispersion of
turning magnets is rather important. For example, for the
turning magnet TM1 the dispersion determines the depen-
dence of the turn angle a1�y� on the electron velocity y,
and it is estimated as

a1�y� � a1

µ
1 2 g2 y 2 yres

c

∂
. (20)

A divergence Da arising after the turning magnet TM1
owing to its dispersion is shown in region C of Fig. 2.
Actually, the structure of the beams in region C can be
considered as a superposition of diverging partial beams
with different velocities and parallel partial beams with
equal velocities. Both the turn of parallel beams by the
turning magnet TM1 and the arising y-dependent diver-
gence give rise to differences of the corresponding elec-
tron routes and, hence, to phase shifts. The phase shift
arising owing to the angular divergence in the regions C
and D depends on y and corresponds to gDw (10), whereas
the phase shift arising owing to the turn of parallel beams
with different x coordinates in the region B depends on the
angular divergence a (15) at the exit from the first wiggler
and corresponds to Dw0 (17).
A B D

w1 w2

FL TM1 TM5TM2 TM4

v=vres

v>v

TM3

l0 l l1 0= l2 l3

α

x
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FIG. 2. A scheme of a device between the two wigglers w1 and w2.
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The difference of routes Ds�a� � s�a� 2 s�0� of par-
allel partial beams arising in regions A, B, and C (plus
the mirror reflection of B and C) is determined by the
geometry of Fig. 2:

Ds�a� � s�a� 2 s�0� � 2l0a tan�a0�
a

2
1

2
. (21)

The corresponding phase shift Dw�a� � 22kLDs has the
form (17) with

A � kLl0 tan�a0�a2
1 . (22)

The main condition of the previous section (18) is
satisfied if

L
l0

� u
kL

2kw
tan�a0�a2

1 �
g2u

1 1 g2u2 tan�a0�a2
1 . (23)

As the distance between two wigglers should not be too
big (l0 # 10 cm), the right-hand side of Eq. (23) must be
large ($30). This is possible if, for example, gu 
 1,
g $ 102, p�2 2 a0 
 0.1, and a1 
 1�3.

The turning magnet TM2 (as well as TM3 and TM4)
is supposed to be made of magnetic plates of varying (x-
dependent) widths, which provide an inhomogeneous mag-
netic field inside the magnets and x-dependent turn angle

a2�x� � a2�0�
µ
1 1

x
b

2 g2 y 2 yres

c

∂
, (24)

where a2�0� � 2a1, b is the “inhomogeneity” parameter
of the turning magnet, and x � x�y� is the vertical po-
sition of a partial beam with a given velocity y at the
plane of TM2:

x�y� 2 x�yres� � l2a1g2 y 2 yres

c
. (25)

The difference of routes Ds�y� � s�y� 2 s�yres� of elec-
trons with y fi yres and y � yres acquired in the regions
C and D (plus their mirror reflection) is calculated directly
from the geometry of Fig. 2 to give

Dw00 � 22v
Ds�y�

c
� 22a3

1
l2l3

cb
g2 eV . (26)

If the coefficient in front of eV on the right-hand side of
Eq. (26) is close to 2T ,

2
l2l3

b
g2 eV � cT � L , (27)
the phase shift (26) is similar to gDw (10) except for a miss-
ing term p�2. The latter can be acquired at the last part of
the electron’s trajectory, between the turning magnet TM5
and the second wiggler w2, to give Dw00 � gDw. Alto-
gether, this makes the Dwtot � Dwopt (9), and gtot�x� �
gopt�x�.

At g 
 102 and b 
 1, the condition (27) can be ful-
filled at l2 and l3 on the order of a few centimeters.

The considerations described above show that, in
principle, the creation of a free-electron laser without
inversion is possible. From the physical point of view,
the main ingredients of the realization of such a system
are the noncollinear geometry and the angular divergence
of the electron beam at the exit from the first wiggler.
The next step consists of a drift region which provides
a superposition of two kinds of phase shifts, which
are proportional to the detuning from resonance in the
drift region and to the field-induced angular divergence,
respectively. With values of these two shifts appropriately
adjusted, the total shift appears to be a linear function
of the initial detuning from resonance and close to the
optimal one. The suggested implementation scheme
seems to be quite feasible, although in real experiments
some elements of this scheme can possibly be modified or
substituted by more convenient ones. Further theoretical
investigations are planned, among them the description of
spontaneous emission in the systems under consideration,
and a quantum description of the FELWI [3].
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