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The methodology developed provides for a systematic way to find an infinite number of the novel
stable bright and dark “soliton islands” in a “sea of solitary waves” of the nonlinear Schrödinger equation
model with varying dispersion, nonlinearity, and gain or absorption. It is shown that solitons exist only
under certain conditions and the parameter functions describing dispersion, nonlinearity, and gain or
absorption inhomogeneities cannot be chosen independently. Fundamental soliton management regimes
are discovered.
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The nonlinear Schrödinger equation model (NLSE)
is one of the most important and “universal” nonlinear
models of modern science. NLSE appears in many
branches of physics and applied mathematics, including
nonlinear quantum field theory, condensed matter and
plasma physics, nonlinear optics and quantum electron-
ics, fluid mechanics, theory of turbulence and phase
transitions, biophysics, and star formation. The current
state of the art in this very active field is reviewed, for
instance, in [1,2]. The best known solutions of the NLSE
are those for solitary waves, or solitons. Characteristic
properties of solitons include a localized wave form that is
retained upon interaction with other solitons, giving them
a “particlelike” quality. The theory of NLSE solitons
was developed for the first time in 1971 by Zakharov
and Shabad [3]. Over the years, there have been many
significant contributions to the development of the NLSE
solitons theory (see, for example, [1–9] and references
therein). After predictions of the possibility of the ex-
istence [10] and experimental discovery by Mollenauer,
Stolen, and Gordon [11], today, NLSE optical solitons
are regarded as the natural data bits and as an important
alternative for the next generation of ultrahigh speed
optical telecommunication systems [12–17].

In this Letter, we predict a new type of nonlinear
Schrödinger solitary waves. We find that there exists an
effective mathematical algorithm to discover and investi-
gate an infinite number of novel solitary wave solutions
for the NLSE model with varying dispersion, nonlinearity,
and gain or absorption.

The problem of soliton management described by the
NLSE model with varying coefficients,
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is a new and important one (see, for example, the review
of optical solitons dispersion management principles and
research as it currently stands in [18–21], and references
therein). NLSE (1) is written here in standard soliton units,
as they are commonly known. There is an assumption
that the perturbations to the dispersion parameter D�Z�,
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nonlinearity R�Z�, and to the amplification or absorption
coefficient G�Z� are not limited to the regime where they
are smooth and small. If we compare Eq. (1) with the
quantum mechanical Schrödinger equation and replace Z
by t and T by x, we recognize that varying coefficients in
Eq. (1) represent the equivalent time-dependent external
potentials for the quasiparticle wave function C�x, t�.

Theorem 1.—Consider the NLSE model (1) with vary-
ing dispersion, nonlinearity, and gain or absorption. Sup-
pose that the Wronskian W�R, D� of the functions R�Z�
and D�Z� is nonvanishing, the two functions R�Z� and
D�Z� are thus linearly independent. There is then an infi-
nite number of solitary wave solutions for Eq. (1) written
in the following form:
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∑
i

P
2

T2 1 i
Z Z

0
K�z � dz �

∏
,

(2)

where the real function Q�S� describes a canonical form
of bright [sgn � 11, Q���P�Z�T ��� � h sech���hP�Z�T ���] or
dark [sgn � 21, Q���P�Z�T ��� � h tanh ���hP�Z�T ���] NLSE
solitons, and the real functions D�Z�, R�Z�, G�Z�, and
P�Z� satisfy the equation system

PZ 1 P2D � 0; W 2 PRD2 � 2GRD . (3)

Theorem 2.—Consider the NLSE model (1) with
varying dispersion, nonlinearity, and gain or absorption.
Suppose that the Wronskian W�R, D� is vanishing, the
two functions R�Z� and D�Z� are thus linearly dependent.
There are then an infinite number conserving the pulse
area solitary wave solutions for Eq. (1):

C � CPQ�S� exp

∑
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P
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Z Z
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∏
, (4)

where the real function Q�S� describes a canonical form of
bright or dark NLSE solitons, and the real functions P�Z�,
D�Z�, R�Z�, and G�Z� satisfy the equation system

PZ 2 2GP � 0; D � C2R � 22GP21. (5)

To prove Theorems 1 and 2 we first construct a stationary
localized solution for the NLSE model (1). Substituting
© 2000 The American Physical Society
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ansatz (2) into Eq. (1) we obtain
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Here we use the notations for the Wronskian W�R, D� �
RDZ 2 DRZ and for S�Z, T � � P�Z�T . Equation (6) rep-
resents the nonlinear wave equation for the Schrödinger
harmonic oscillator, where we use the notations for the en-
ergy E�Z� � 2K�P2�D and for the frequency V2�Z� �
D21P22�P22PZ 1 D�. Equation (6) was solved numeri-
cally for the first time in [22] and gave rise to a concept of
quasisolitons [18].

Now we make the important assumption about the so-
lution of the equation system (6) and (7). Let us consider
the complete nonlinear regime when Eq. (6) represents the
ideal NLSE. Then from (6) and (7) it follows equation
system (3). We note that the main varying parameters
G�Z�, D�Z�, and R�Z� are characterized by the value of
the Wronskian W�R, D�. It is then straightforward to ver-
ify systems of Eqs. (3) and (5) after using the conditions
W fi 0 in case (3) or W � 0 in case (5). Theorem 1 as
well as Theorem 2 have now been proved.

One can easily construct the more general solution for
the NLSE model (1) in the case of arbitrary soliton ampli-
tude and velocity by applying the Galilei transformation
of Eqs. (2) and (4) and using the equation for the “soliton
center” D�Z� given by DZ � 2VD�Z�, where V is a soli-
ton group velocity (in the case of spatial soliton V � tanu,
and u is the angle of propagation in the X-Z plane).

Now we turn our attention to finding solutions for speci-
fied soliton management conditions.

Case 1: soliton dispersion management.—Suppose that
dispersion management function D�Z� � F�Z� (we call it
control function here) is a known arbitrary analytical func-
tion, and nonlinearity R�Z� � const. The function F�Z�
is required only to be a once-differentiable and once-
integrable, but otherwise arbitrary, function; there are no
restrictions. There are then an infinite number of solutions
for Eq. (1) of the form of bright and dark dispersion man-
aged (DM) solitons represented by Eq. (2), where the main
functions P�Z� and G�Z� are given by

P � 2
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;

2G � F21FZ 2 PF ,
(8)

and C is the constant of integration (both positive and
negative).

Case 2: soliton amplification management and the
problem of optimal soliton amplification.—Suppose that
the gain (or loss) coefficient is determined by the known
control function G�Z� � L�Z�, where the control function
L�Z� is required only to be once integrable. There are
then an infinite number of solutions for Eq. (1) of the
form of bright and dark solitons represented by Eq. (2),
where the main functions D�Z� and P�Z� are given by
quadratures

jP�Z�j jD�Z�j � exp

∑Z
2L�Z� dZ 1 C1

∏
, (9)

ln jDj �
Z

�2L�Z� 6 jP�Z�j jD�Z�j� dZ 1 C2 . (10)

Here integration constants C1,2 are determined by initial
conditions.

Case 3: soliton pulse width management and the prob-
lem of optimal soliton pulse compression.—Suppose that
soliton pulse width is determined by the known control
function P�Z� � Q�Z�, where the real function Q�Z� is
required only to be a twice-differentiable, but otherwise
arbitrary, function, there are no restrictions. There are then
an infinite number of solutions for Eq. (1) of the form of
bright and dark solitons represented by Eq. (2), where the
main coefficients of the NLSE model D�Z� and G�Z� are
given by

D�Z� � 2Q22QZ ; 2G�Z� � Q21
Z �Q21QZ�Z .

(11)

Case 4: combined nonlinear and dispersion soliton
management regime.—To suppose that the Wronskian
W�R, D� is vanishing means that the nonlinearity R�Z�
and dispersion D�Z� are linearly dependent functions.
Assume also that dispersion management function D�Z� is
determined by the known control function D�Z� � J�Z�,
where the function J�Z� is required only to be once
integrable. There are then an infinite number of solutions
for Eq. (1) of the form of bright and dark conserving
pulse area solitons represented by Eq. (4), where the
main functions D�Z�, P�Z�, R�Z�, and G�Z� are given by
quadratures

P�Z� � 2

∑
C 2

Z
J�Z� dZ

∏21

, (12)

2G�Z� � 2J�Z�P�Z�; D�Z� � C2R�Z� . (13)

Notice that by applying Theorem 1 [Eqs. (2) and (3)] and
Theorem 2 [Eqs. (4) and (5)] we can find a fundamental set
of different soliton management regimes — for example,
soliton dispersion management, soliton energy and inten-
sity control, optimal soliton amplification, and compres-
sion regimes.

The interested reader can take different arbitrary param-
eter functions D�Z�, R�Z�, or G�Z� to find the novel “soli-
ton islands” in a “sea of solitary waves” for the NLSE
model (1) by using the algorithm developed in this paper.
Notice that soliton solutions exist only under certain con-
ditions and the parameter functions D�Z�, R�Z�, and G�Z�
4503
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cannot be chosen independently; they satisfy equation sys-
tems (3) and (5).

Examples.—Let us consider some examples. The
fundamental set of dispersion managed solutions can be
expressed in trigonometric and hyperbolic functions.
Assume that the dispersion coefficient of the NLSE model
(1) is a periodically varying control function:

D�Z� � F�Z� � 1 1 d sinmkZ . (14)

Then an infinite number of the DM-soliton solutions are
given by Eqs. (2) and (8). Integration in (8) is elementary
for any value of the parameter m, and in the simplest case
(m � 1) is given by

P�Z�21 � 2�C 2 Z 1 d cos�kZ��k� , (15)

2G�Z� � 2FP 1 F21dk coskZ . (16)

Let us consider periodical soliton dispersion manage-
ment regimes in the case of Theorem 2. The main feature
of soliton solutions given by Theorem 2 consists of the
fact that the soliton pulse area is conserved. Assume the
dispersion inhomogeneity D�Z� to be a potential barrier,
for instance, of the cos or sin functional form. Then the
combined nonlinear and dispersion management regime is

FIG. 1. Evolution of the dispersion managed bright and dark
solitary waves [Eqs. (2) and (14)–(16)] as a function of the
propagation distance. Initial conditions: m � 1; k � 8; d �
0.5; and C � 104.
4504
given by

D � cosZ; P � 2�C 2 sinZ�21; 2G � 2PD ,
(17)

where arbitrary constant jCj . 1.
Let us consider the soliton pulse width management

regimes. One of the simplest periodical soliton solutions
is given by

P�Z� � Q�Z� � 2�1 1 d sin2Z�; 2G � 2PD ,
(18)

D�Z� � d�1 1 d sin2Z�22 sin2Z . (19)

The main features of analytical solutions predicted (The-
orems 1 and 2) have been investigated by using direct com-
puter simulations. Their solitonlike features have been
proved in our computer simulations with the accuracy as
high as 1029. The time-space evolution of bright and
dark DM solitons for the case represented by Theorem 1
[Eqs. (2) and (14)–(16)] is shown in Fig. 1. The time-
space dynamics of the propagation and interaction of DM
solitons for the case of Theorem 2 [Eqs. (4), (18), and
(19)] is shown in Fig. 2. An important feature of the soli-
tary waves solutions given by Eqs. (2)–(5) consists of the

FIG. 2. Evolution of the DM bright solitary waves [Eqs. (4),
(18), and (19)] as a function of the propagation distance
(DM-soliton “snake” effect) and nonlinear trapping of two
DM-soliton pulses in the periodically dispersion managed
structure [Eq. (19)]. Initial conditions: G�Z � 0� � 0.5;
d � 0.9; and V1,2�Z � 0� � 610.
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FIG. 3. Two DM solitons [Eqs. (2) and (14)–(16)] bound state
formation and decay in the presence of Raman self-scattering
effect. Initial conditions: k � 4; C � 104; and d � 0.9.

elastic character of their interaction. We also have inves-
tigated the nonlinear dynamics of high-order solitons gen-
eration in the frame of the NLSE model (1). Figure 3
shows periodical time-space evolution of the bound state of
two DM solitons [Eqs. (2) and (14)–(16)] and represents
the decay of this bound state produced by a self-induced
Raman soliton scattering effect which has been considered
within the framework of the oscillator model [23]. This re-
markable fact also emphasizes the full soliton features of
solutions discussed. They not only interact elastically but
they can form bound states, and these bound states split
under perturbations.

In summary, the methodology developed (Theorems 1
and 2) provides for a systematic way to discover and in-
vestigate an infinite number of the novel solitary waves
for the NLSE model with varying dispersion, nonlinearity,
and gain or absorption. The surprising aspect is that ana-
lytical solutions are obtained here in quadratures. Their
pure solitonlike features are confirmed by accurate direct
computer simulations. The results obtained in this Letter
are of general physics interest and should be readily ex-
perimentally verified. The finding of a new mathematical
algorithm to discover solitary wave solutions in nonlinear
dispersive systems with spatial parameter variations is im-
portant to the field, and might have significant impact on
future research.

Finally, the authors would like to express special grati-
tude to Professor V. E. Zakharov for reading and comment-
ing on the entire manuscript and for fruitful suggestions.
Special thanks are due to Professor T. H. Tieman for care-
fully checking the manuscript.
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