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Absolute Differential Cross Sections for Photo Double Ionization of Helium from the Ab Initio
Hyperspherical R-Matrix Method with Semiclassical Outgoing Waves
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The hyperspherical R-matrix method with semiclassical outgoing waves introduced by us previously
[Phys. Rev. A 60, 3667 (1999)] is applied to the one-photon double ionization of the He atom. The
absolute differential cross sections obtained are in excellent agreement with experiment for the very
challenging dynamical situations considered. This method is the first one to compute the final double
continuum state accurately over the entire configuration space, from the vicinity of the nucleus to the
asymptotic region.

PACS numbers: 32.80.Fb
The theoretical treatment of correlations in the double
electronic continuum is a long-standing challenge in
atomic physics. The derivation by Wannier [1] of the
threshold law for the double electron escape cross section
was the first success ever obtained on this problem. Since
then, a lot of efforts have been devoted to the study of
the simplest processes leading to a double continuum
electronic state: photo double-ionization (PDI) of He, and
electron-impact ionization of H. In the mid-1990s, ab-
solute triply and singly differential cross sections (TDCS
and SDCS) as well as integrated cross sections (ICS) in
fair agreement with experiment were obtained using the
2SC (2 screened Coulomb) method [2,3]. This method,
however, was not pushed further. By contrast, the CCC
(convergent close coupling) method [4] has accumulated
an extensive set of data over the last eight years [5]. The
TDCS obtained agree very well with experiment in shape
if one disregards their poor account of the well-known
node for antiparallel emission at equal energy sharing.
However, their agreement in magnitude follows from
an a posteriori rescaling procedure, based on the value
of the ICS, and on the assumption of a flat SDCS. An
ab initio rescaling procedure has been proposed recently
to overcome this limitation in the case of equal energy
sharing [6]. Yet the unequal energy sharing case remains
unsolved, and the method still fails to produce sensible
SDCS, although it yields the correct ICS from the optical
theorem. The reason for these drawbacks has been shown
by Rescigno et al. [7] to lie in the extraction of the cross
section, which is based on an asymptotic form implying
that a single electron escapes to infinity.

Very recently, other methods have appeared, which deal
with the full complexity of the double escape dynamics
transparently and without introducing oversimplifying ap-
proximations. They represent an important step towards
the resolution of the problem. The time-dependent method
of Pindzola and Robicheaux [8] requires propagating the
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wave function long enough, which means far enough as
well, to extract the cross section accurately. The computer
power currently available has limited application of this
method to either computing integrated cross sections for
long range Coulomb potentials [8], or computing differ-
ential cross sections for short range potentials [9], as inte-
grated cross sections converge faster than differential ones.
Rescigno et al. [10], by contrast, have obtained the double
continuum wave function by solving a stationary inhomo-
geneous equation subject to outgoing wave boundary con-
ditions. Those authors have used exterior complex scaling
that circumvents the need to formulate detailed asymptotic
conditions and allows one to compute the wave function
accurately within an r1 3 r2 square of a few hundreds
a.u. side. The cross sections are extracted by applying
an extrapolation procedure to the computed outgoing flux.
The resulting method, although less demanding numeri-
cally than the time-dependent approach by Pindzola and
Robicheaux [8], still relies upon intense parallel comput-
ing. It has been applied to electron-impact ionization of H
with a remarkable success.

Here we report the first results obtained by applying the
hyperspherical R matrix method with semiclassical outgo-
ing waves (HRM-SOW) to the PDI of He. The principle
of the HRM-SOW method being described in [11], we re-
call only its main features here. Taking advantage of the
periodicity in time of the atom-field interaction, we use
the Floquet theorem [12] to transform the time-dependent
Schrödinger equation into a set of stationary coupled par-
tial differential equations (PDE). In the weak field limit,
this set reduces to the single inhomogeneous stationary
equation

�E0 1 v 2 H0�C � VC0 , (1)

subject to outgoing wave conditions, with H0 the field-
free Hamiltonian, E0 and C0 the He ground state energy
and wave function, v the photon frequency, and V the
© 2000 The American Physical Society
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time-independent part of the atom-field interaction in the
dipole approximation. The wave function at large time be-
ing a superposition of C0 and C with the time-oscillating
phase factors associated with the energies E0 and E0 1 v,
the PDI cross sections can be derived from the asymptotic
behavior of C. Note that a finite range approximation of
this very function C was involved in the 2SC approach.
Note also the analogy between our formulation of the PDI
problem and the formulation by Rescigno et al. [10] of the
electron-impact ionization problem.

Our method uses hyperspherical coordinates, namely
the hyperradius R �

p
r2

1 1 r2
2 , the angle of radial cor-

relation a � arctanr1�r2, the angle of angular correlation
u12 � ��r1, �r2�, complemented by a set of three Euler angles
denoted collectively by V. This coordinate system, well
suited to the description of a correlated motion, is numeri-
cally very convenient as only one variable is of infinite
range. Projecting the 1Po wave function C onto the appro-
priate Wigner functions D16

01 �V� [13–15] eliminates the
Euler angles from the treatment at the cost of introducing
the two components F6�R, a, u12�. In the following, we
shall omit the 6 labels for simplicity, and treat these two
components as a unique vector.

Next, we separate configuration space into the inner re-
gion R # R0 and the outer region R . R0. From Eq. (1)
and its homogeneous and Hermitian counterpart defined
over the inner region by adding the usual Bloch opera-
tor [16], we can easily derive an R matrix relation at the
boundary R0. We express this relation in the adiabatic an-
gular basis obtained by diagonalizing H0 at fixed R � R0.
Expanding F�R, a, u12� on the adiabatic angular eigenvec-
tors XM�R0; a, u12� defines locally uncoupled hyperradial
channel functions FM�R�, the evolution of which is gov-
erned by the adiabatic potentials EM�R�. These channel
functions satisfy the R matrix condition

F0
M�R0� �

X

M 0

RMM 0FM 0�R0� 1 VM�R0� , (2)

where the vector with components VM is related with the
inhomogeneous term in Eq. (1). Next, we approximate
each FM�R� at R0 , R , R0 1 e according to the JWKB
(Jeffreys, Wentzel, Kramers, and Brillouin) approximation
by the product of a slowly varying function of R with a
semiclassical outgoing wave associated with the momen-
tum pM�R� �

p
2�E 2 EM�R��, with E the total excess

energy above threshold. A second relation between these
functions and their radial derivatives follows:

F0
M�R0� � ıpM�R0�FM�R0� . (3)

Solving Eqs. (2) and (3) yields the solution of Eq. (1) at
the boundary, provided R0 is chosen large enough for the
JWKB approximation to be valid in the external region.

This solution is found to be dominated by the M � 0
component. This suggests for us to look for the solution
for R . R0 in the simpler form

F�R, a, u12� �
1p

p0�R�
e

ı
RR

R0
p0�R0� dR0

f�R, a, u12� , (4)

where ≠2f�≠R2 � 0, so that f satisfies a PDE of first
order over R. This establishes a formal analogy with a
time-dependent problem. However, by contrast with the
time propagation of a function of two radial variables
[8], the hyperradial propagation of a function having a
twofold dependence on angular variables defined over a
finite range is not limited by the computer resources: we
are thus able to propagate the wave function up to the true
asymptotic region where the cross sections are extracted
directly by computing the outgoing flux.

The results we present here have been obtained at 20 eV
above threshold, near the maximum of the ICS, where
small variations in E hardly affect the dynamics. This
allows us to compare them with experiments performed not
only at but also near this energy. All cross sections have
been extracted at R � 105 a.u. where they have clearly
converged. They have been computed in length, velocity,
and acceleration gauge: in all cases, the differences were
smaller than the width of the representative lines. We
emphasize that the cross sections obtained are given on an
absolute scale and their calculation does not involve any
adjustable parameter or a posteriori rescaling factor.

The relative TDCS of Mazeau et al. [17] and the abso-
lute TDCS of Bräuning et al. [18] were recorded at nearby
total energies, 18.6 and 20 eV, respectively, and for energy
ratios r � E1�E2 of 8.3, 1, 0.12 and 5.67, 1, 0.18, respec-
tively. The photon beam, directed along k̂, was linearly
polarized along the main axis ê. The value of the Stokes
parameter S1, 0.98 in [18], did not matter in [17]. One
electron was ejected along ê, and the TDCS was recorded
as a function of u2 � �ê, r̂2�, with �r2 scanning the �ê, k̂�
plane in [17], and the plane orthogonal to k̂ in [18]. These
equivalent geometrical configurations have been recog-
nized as the most challenging for the theory in unequal en-
ergy sharing situations. The relative data of Mazeau et al.
[Figs. 1(a)–1(c)] have been rescaled to our calculated
TDCS: their agreement with the theory, as far as the shapes
are concerned, is very satisfying at all energy sharings.
The absolute data of Bräuning et al. [Figs. 1(d)–1(f)]
show that our theory also yields the correct absolute
values of the cross sections. Note, however, the difference
in shape between theory and experiment in Fig. 1(e). It
is worth pointing out that the data of Mazeau et al. have
been questioned on the basis of Bräuning’s results [18].
The present calculations reconcile the two sets of mea-
surements, by proving that a single theory is compatible
with both sets. They also show that the ratio between
the central lobe and the two side lobes, which determines
the shape of the unequal energy sharing TDCS, is a very
sensitive function of the energy ratio r.

Before HRM-SOW was developed, the only approach
which had ever produced a full set of absolute TDCS,
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FIG. 1. Polar plots of the TDCS in b�eV�21�sr�22 versus the emission angle of the second electron. The first electron is emitted
along the linear polarization axis indicated by the arrow. Points with error bars: experiments from [17] with r � 1 (a), 8.3 (b),
0.12 (c), and from [18] with r � 1 (d), 5.67 (e), and 0.18 (f). Continuous lines: present calculations (length, velocity, and accelera-
tion superimposed); dashed lines: 2SC results [3].
SDCS, and ICS in agreement with experiment was 2SC.
This is why we restrict our comparison with other theories
to this single method. Theoretical 2SC results are available
at E � 18.6 eV and r � 5.2, 1, 0.19 [3]. As the dynamics
depends much more on r than on E, they can be compared
with the results displayed at the bottom of Fig. 1. The
agreement in shape and in absolute magnitude between the
2SC and HRM-SOW theories is remarkable at all energy
sharings.

Figure 2 shows the excellent agreement between our
single differential cross section (SDCS) and the measure-
ments of Wehlitz et al. [19]. Our very flat computed cross
section is symmetrical with respect to E�2, as it must be,
since the two electrons are treated on an equal footing
throughout configuration space. It exhibits very dramatic
oscillations in an energy domain of the order of EDr�R
around 0 and 20 eV, where Dr is the range of the He1

Rydberg states populated by the competing process of
single ionization with excitation. For the large value of the
hyperradius (R � 105 a.u.) where the cross sections have
been extracted, these oscillations are confined within such
a short range that they cannot be distinguished from the
left and right vertical axis of Fig. 2. Small oscillations are
superimposed on the flat pattern: they would be smeared
out by further increasing the size of the a basis set used in
our inner region calculations. Note that similar oscillations
affect the 2SC data [2]. These 2SC results are in excellent
agreement with ours, if they are corrected for a factor 2 er-
ror which has been identified by the authors later on [20].

The integrated cross section can be deduced from the
SDCS of Fig. 2 provided an extrapolation is performed at
4452
the boundaries to get rid of the strong oscillations men-
tioned above. Clearly, the plateau at 0.9 kb�eV�21 in
the SDCS is consistent with the reference experimental
8.76 kb value of the ICS given by Samson et al. [21],
which has been used by Bräuning et al. [18] to calibrate
their differential data.

The HRM-SOW method is then capable of producing a
full set of differential and integrated cross sections which
agree with experiment in shape as well as in magnitude
in a very challenging dynamical situation. It is the first
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FIG. 2. SDCS in kb�eV�21 versus the energy of one electron in
eV. Continuous line: present calculations. Circles: experimental
results from [19].
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method which is able to compute the correct double con-
tinuum final state over the entire configuration space from
the nucleus to the far asymptotic region. This allows us to
demonstrate the substantial role of both the region close to
the nucleus and the external region in forming the various
cross sections. This specificity of our method is also the
key to the success of ab initio studies at very low energies,
where other methods fail to converge.

It is noteworthy that this method does not rely upon
supercomputing facilities: the present results have been
obtained on a PC running under Linux and equipped with
a Pentium III 400 Mhz and 768 MB RAM. A typical
exploitation requires 18 h and the full memory of the
computer.

Let us emphasize, to conclude, that the power of the
method results from its combined use of two theoreti-
cal tools which never met before: the R matrix method,
which is closely linked with L2 numerical techniques, and
the JWKB approximation, which has a natural relation-
ship with time-propagation techniques. In a forthcoming
publication, we will present more extensive results, includ-
ing the ag�E1, E2, u12� and au�E1, E2, u12� parametrization
functions introduced by Huetz et al. [22].

We thank R. Wehlitz and H. Bräuning for communicat-
ing their data files. We are grateful to A. Huetz for count-
less discussions and for his help on the manuscript.
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