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Complete Quantum Teleportation with a Kerr Nonlinearity
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We present a scheme for the quantum teleportation of the polarization state of a photon employing
a cross-Kerr medium. The experimental feasibility of the scheme is discussed and we show that, using
the recently demonstrated ultraslow light propagation in cold atomic media, our proposal can be realized

with presently available technology.

PACS numbers: 03.67.Hk, 03.65.Bz, 42.65.—k, 42.50.Gy

Quantum entanglement is a powerful resource at the
basis of the extraordinary development of quantum in-
formation. Among the most fascinating examples of the
possibilities offered by sharing quantum entanglement are
guantum teleportation [1], quantum dense coding [2], en-
tanglement swapping [3], quantum cryptography [4], and
gquantum computation [5]. Quantum teleportation is the
“reconstruction,” with 100% success, of an unknown state
given to one station (Alice), and performed at another re-
mote station (Bob), on the basis of two bits of classical
information sent by Alice to Bob. Perfect teleportation is
possible only if the two parties share a maximally entan-
gled state. The most delicate part needed for the effective
realization of teleportation is the Bell-state measurement,
i.e., the discrimination between the four, maximally entan-
gled, Bell states [6] which has to be performed by Alice
and whose result is communicated to Bob through the clas-
sical channel. There have been numerous proposals for its
realization in different systems[7] and recently successful,
pioneering experiments [8—10] have provided convincing
experimental proof of principle of the correctness of the
teleportation concept.

These experiments differ by the degrees of freedom used
as qubits and for the different ways in which the Bell-state
measurement is performed. The Innsbruck experiment [8]
is the conceptually simplest one, since each qubit is rep-
resented by the polarization state of a single photon pulse.
In this experiment, however, only two out of the four Bell
states can be discriminated, and therefore the success rate
cannot be larger than 50% [11]. The Rome experiment
[9] employs the entanglement between the spatial and the
polarization degrees of freedom of a photon and it is able
to distinguish all the corresponding four Bell states com-
pletely. However, in this scheme the state to be teleported
is generated within the apparatus (it cannot come from the
outside), and therefore the scheme cannot be used as a
computational primitive in a larger quantum network for
further information processing, asit has been recently pro-
posed in Ref. [12]. Finally, the Caltech experiment [10]
is conceptually completely different since it implies the
teleportation of the state of a continuous degree of free-
dom [13], the mode of an electromagnetic field, employ-
ing the entangled two-mode squeezed states at the output
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of a parametric amplifier. In this case, the Bell-state mea-
surement is replaced by two homodyne measurements and
a direct comparison with the original quantum teleporta-
tion scheme of Ref. [1] cannot be made. Up to now, only
coherent states of the electromagnetic field have been suc-
cessfully teleported using this scheme.

It is therefore desirable to have a scheme for a Bell-
state measurement that can be used in the simplest case of
the Innsbruck scheme. This would imply the possibility
of realizing the first complete verification of the origina
guantum teleportation scheme [1] and aso of having a de-
vice useful for other quantum protocols, as quantum dense
coding [2]. What we need is a device able to discrimi-
nate among the four Bell states that can be realized with
the polarization-entangled photon pairs produced in Type-
I phase matched parametric down-conversion [14], that is

ay |Vy, Hy) = |Hy, Va)

l=) 7 (1a)
w _ Vi,W) * |H\, Hy)

where |H) and |V) denote the horizontally and vertically
polarized one-photon states, respectively, and 1, 2 refer to
two different spatial modes.

It has been recently shown that it is impossible to
perform a complete Bell measurement on two-mode
polarization states using only linear passive elements
[15] (unless the two photons are entangled in more than
1 degree of freedom [16]), and for this reason schemes
involving some effective nonlinearities, such as resonant
atomic interactions [17], or the Kerr effect [18], have been
proposed. In the present L etter, we propose a scheme for a
perfect Bell-state discrimination based on anonlinear opti-
cal effect, the cross-phase modulation taking place in Kerr
media. In this respect, our scheme is based on a y©
medium as the “Fock-filter” proposa of Ref. [18]. How-
ever, our scheme is different and ssmpler and, above all,
is feasible using available technology, since we shall
show that the needed crossed-Kerr nonlinearity can be
obtained using the recently demonstrated ultraslow light
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propagation [19], achieved via electromagnetic induced
transparency (EIT) [20] in ensembles of cold atoms.

Our “Bell box” is described in Fig. 1 and can be
divided into two parts: the left part is composed by three
polarization rotators (R, Rt) and by the “quantum phase
gate” (QPG) which will be described below, and can
be called “the disentangler,” since it realizes the unitary
transformation changing each Bell state of Egs. (1) into
one of the four factorized polarization states, i.e.,

l ™) — |H1, V2), (29)
™) — V1, V), (2b)
|¢™) — |H1, Ha), (20)
l¢p™) — Vi, Ha). (2d)

Theright part of the schemeis composed by two polarizing
beam splitters (PBSs) and by four detectors with single-
photon sensitivity, and simply serves the purpose of de-
tecting the four states of the factorized polarization basis,

{ler), lea), les), lea)}
= {|H\,H2),|H,V2),|V1,H2), V1, V2)}, (3)

where {|e;)} are the tensor product of the single-photon
polarization basis states,

m=(o) m-(). @

Because of the one-to-one correspondence of Egs. (2), it
is clear that the detection of each Bell state corresponds to
a different pair of detector clicks, so that they are unam-
biguously distinguishable. The disentangler, and in par-
ticular the QPG, is the most delicate part as concerns
the experimental implementation, since it involves a two-
qubit operation, i.e., an effective photon-photon interac-
tion. In fact, if R; is a simple polarization rotation by
7/4 rad for mode i (and R, its inverse), i.e., |H;) —

(H:) + Vi) /N2, Vi) = (Vi) — |H;))/+/2, we have
R, =R1®12, R2=11®R29 (5)

which can be obtained using a A/2 retardation plate at a
/8 angle. InEq. (5) I; isthe2 X 2 unit matrix for mode

Disentangler

Kerr
medium

QPG

FIG. 1. Scheme of the Bell-state measurement: QPG is the
quantum phase gate of Egs. (6) with ¢ = 7; R (RT) rotates
the polarization by 7 /4 (—/4), and PBS are polarizing beam
splitters. The “disentangler” performs the unitary transformation
of Egs. (2).
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i. The general QPG P(¢) is a universal two-qubit gate as
longas ¢ # 0[21,22], and, in the two-photon polarization
basis (3) we are considering here, it can be written as

|Hy, Hy) — |Hy, Hy), (6a)
|Hy, Vo) — |Hy, V), (6b)
Vi, Hy) — |Vi, Ha), (6c)
V1, Va) = €|V, Va). (6d)

The experimental realization of this gate has been reported
in Ref. [23], in the case when one qubit is given by the in-
ternal state of a trapped ion and the other qubit by its two
lowest vibrational states, and recently in Ref. [24] where
the two qubits are represented by two circular Rydberg
states of a Rb atom and by the two lowest Fock states of a
microwave cavity. In the optical case we are interested in,
the QPG between two frequency-distinct cavity modes has
been experimentally investigated in Ref. [22], using, how-
ever, weak coherent states instead of single photon pulses,
demonstrating therefore only conditional quantum dynam-
ics and not the full quantum transformation of Egs. (6).
As it can be easily checked, the QPG (6) can be realized
using a crossed-Kerr interaction involving the vertically
polarized modes only,

Hy = ﬁXa‘tlavla\f/zavz, @)

so that the conditional phase shiftis ¢ = y i, Where t;y,
is the interaction time within the Kerr medium.

The disentangler of Fig. 1 realizes the transformation
(2) when the conditional phase shift is ¢ = 7, asit can
be checked in a straightforward way by writing the matrix
form of the transformation

RIR,P(7)R) ®)

of Fig. 1 in the factorized polarization basis (3), which
is just the matrix form of Egs. (2) in the chosen basis.
The proposed Bell box is therefore extremely simple and
also robust against detector inefficiencies. This is due
to the fact that in our scheme only one photon at most
impinges on each of the four detectors. First of al this
means that only single photon sensitivity and not single
photon resolution is needed, and in this case solid-state
photomultipliers can provide up to 90% efficiency [16].
Moreover, thisimpliesthat the detection schemeisreliable,
i.e, it dwaysdiscriminatesthe correct Bell state, whenever
it answers. Inthe case of detectorswith the same efficiency
n, our Bell box gives the (always correct) output with
probability %2, and it does not give any output (only zero
or one photon is detected) with probability 1 — 72.

As we have aready remarked, the most difficult part
for the experimental implementation of the scheme is the
QPG with a conditional phase shift ¢ = 7. In fact, re-
alizing the transformation (6) means having a large cross-
phase modulation at the single photon level between two
traveling-wave pulses, with negligible absorption, which
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is very demanding. For example, in the experiment of
Ref. [22], aconditional phase shift ¢ = 16° hasbeen mea-
sured, which, however, involved two frequency-distinct
cavity modes in a high-finesse cavity. However, the recent
demonstration of ultraslow light propagation in a cold gas
of sodium atoms [19] and with hot Rb atoms [25] opens
the way for the realization of significant conditional phase
shifts also between two traveling single photon pulses. In
fact, the extremely slow group velocity is obtained as a
consequence of EIT [20], which, however, as originaly
suggested by Schmidt and Imamoglu in Ref. [26], can also
be used to achieve giant crossed-Kerr nonlinearities. In
fact, Harris and Hau [27], developing the suggestions of
Ref. [26], showed that, when the ultraslow group velocity
is the dominant feature of the problem, nonlinear optical
processes between traveling pulses with a low number of
photons become feasible.

In particular, in the limit of very small group veloc-
ity, and therefore with light pulses compressed to a spa-
tia length much smaller than the medium length, they
find a conditional phase shift per photon between two
pulses (characterized by frequencies w,4 and w, in [27])
given by ¢ = yauAwau/(dys + 4Aw3,), accompanied
by a two-photon absorption y3,/(4y3, + 4Aw3,), where
A w»y is the detuning of one of the two pulses and 4 the
associated linewidth [see Eq. (10) of Ref. [27]]. For asuf-
ficiently large detuning A w,4 > v,4, two-photon absorp-
tion is negligible and we have just the desired result, i.e.,
a significant conditional phase shift between two travel-
ing single photon pulses without appreciable absorption.
Unfortunately, in this same limit, the phase shift becomes
@ = vy /4Aw>4 Which cannot be too large and close to
7, a we have assumed above in the Bell box scheme.
This may be a problem because it is possible to see that
if the phase ¢ of the QPG is not equal to 7, the scheme
of Fig. 1isno longer perfect, and it does not discriminate
the four Bell states with 100% success. However, it should
be noted that this is not a theoretical limitation, but only
a practical drawback of the specific scheme of Ref. [27].
Furthermore, as mentioned above, the QPG represented by
P(¢) is a universa two-qubit gate, capable of entangling
and disentangling qubits as soon as ¢ # 0. Moreover,
even though different from 7, the conditional phase shift
¢ isagiven and measurable property, and it is reasonable
to expect that, using the knowledge of the actual value of
¢, it is possible to adapt and optimize the teleportation
pratocol in order to achieve atruly quantum teleportation
(i.e., that cannot be achieved with only classical means),
even in the presence of an imperfect Bell-state measure-
ment. Optimization means that Bob has to suitably mod-
ify the four local unitary transformations he hasto perform
on the received qubit according to the Bell measurement
result communicated by Alice. In the optimized protocol,
Bob's local unitary transformations will now depend on
the phase ¢ of the QPG and will reduce to those of the
original proposal [1] in the ideal case of perfect Bell-state

discrimination ¢ = 7. We expect that, V¢ # 0, the av-
erage fidelity of the teleported state will be aways larger
than 2/3, asit must be for any truly quantum teleportation
of a qubit state [28].

Let us therefore consider a generic one-photon state
l)1 = a|H) + B|V1), whichisgivento Aliceand hasto
be teleported to Bob, and let us assume that Alice and Bob
share the Bell state |lﬂ+>23 = (|H2V3> + |V2H3>)/\/§, SO
that the input state for the teleportation process is |i); ®
|4 *)3. Alice is provided with the “imperfect” Bell box
with a QPG P(¢), so that the disentangler of Fig. 1 will
now be described by the transformation RELRzP(cp)R;r Lt
is easy to check that, when ¢ # 7, thefour Bell states are
no longer completely disentangled and therefore no longer
discriminated with 100% success.

Alice has to perform the Bell-state measurement on
modes 1 and 2, and the resulting joint state of the three
modes just before the photodetections is

4
)23 = Z |€i>1zéi(¢) i), 9)
i=1

where |e; )1, are the factorized basis states (3) and

Gilg) = ;(? e ) (108)
Galg) = ;(é _e;:if/i‘;ff%), (10b)
Gsle) = ;(_01 _eiii/i/;i%% ) (100
o= 4( o et ) a0

When the photons are detected, Alice sends the results
through the classical channel to Bob. Bob is left with the
photon of mode 3, and applies alocal unitary transforma-
tion U;(¢) in correspondence to the ith result of the Bell-
state measurement. As a consequence, the output state of
the teleportation process is

4
pout = O Ui(@)Gi(@) [¥)s(|Gi(@) T Uit (11)
i=1

Since the output state has to reproduce the unknown input
state |/) as much as possible, it is evident that to optimize
the local unitary transformations U;(¢), one should “in-
vert” G;(¢). The best strategy is suggested by the use of
the polar decomposition of the matrices G;(¢),

Gile) = Ti(e)Ri(e), (12)

where R;(¢) = 1/Gi(¢)tGi(¢) is Hermitian and T;(¢)
unitary, so that Bob’s optimal local unitary transformations
will be

Ui(p) = Ti(e) ™' = Ri(e)Gi(p) ™. (13

Using Egs. (10), (12), and (13), one finds the following
Bob’s optimal unitary transformations:
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. T+ s Tt
~ —1COS—— SIN——
_ 4 4
Uile) = (ie_""’/zsin”:‘” o—ie/2 COSWI¢ ), (148
T—¢ . T
~ COS—— —1S9N—F—
Uy@) = _ion oo . _i ‘¢ |, (14b
2(¢) (6 ip/2 Sn774¢’ ie ip/2 COSW4‘P ( )
. T+ s Tt
A 1 COS—;— —SN—(—
_ 4 4
Usle) = (ie""msin—”:@ e~i9/2cosT ¢ ) (14c)

T
— OS5+

isin= %
04(90):< —i0)2 G T !
e”i%/2d8n 7

i1/ cosT2 ) (14d)
which (once the conditional phase shift is known) can be
easily implemented using appropriate birefringent plates
and polarization rotators. It can be checked that, in the
special case ¢ = 7, the above optimized teleportation
protocol coincides with the origina one [1], since one
has Uy(7) = oy, Us(w) =1, Us(w) = —ioy,, and
Us(m) = —0,.

Finally, we have to check that the proposed teleportation
pratocol, even though no longer with 100% success when
¢ + , dways implies the realization of a true quantum
teleportation, that cannot be achieved with only classical
means. This amounts to check that the average fidelity of
the output state is larger than 2/3 for 0 < ¢ < 27r. For
pure qubit states, the average fidelity F,, is defined as

1
fo = 47

j 40 (Yl poul). (15)

where the integral is over the Bloch sphere and |¢) is the
generic input state. Using Egs. (11) and (13) one has

4
Wlpoul) = D KwrlRi(@) )P, (16)
i=1

so that, using the explicit expressions for R;(¢) that can be
obtained from Egs. (10), and performing the average over
the Bloch sphere, one finaly finds

2 1 .
Fav(go):g + gsn

N“S

, (17)

which is larger than the upper classica bound F,, = 2/3
[28] for 0 < ¢ < 27, as expected.

In conclusion, we have presented a physical implemen-
tation for the quantum teleportation of the polarization
state of single photons, such as those produced in spon-
taneous parametric down-conversion, based on a crossed-
Kerr nonlinearity. In the ideal case, the scheme provides
a perfect Bell-state discrimination, and it could be imple-
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mented using the giant nonlinearities already demonstrated
in atomic gases exploiting EIT [19,25].

Note added in proof.—After submission, we have be-
come aware of Ref. [29] which shows that a conditional
phase shift ¢ closeto 7 could be achieved at single photon
level if both light pulses are subject to EIT and propagate
with slow but equal group velocities. This fact makes us
more confident on the feasibility of the proposed scheme.
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