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Increasing evidence suggests that most of the energy density of the universe consists of a dark energy
component with negative pressure that causes the cosmic expansion to accelerate. We address why this
component comes to dominate the universe only recently. We present a class of theories based on an
evolving scalar field where the explanation is based entirely on internal dynamical properties of the
solutions. In the theories we consider, the dynamics causes the scalar field to lock automatically into
a negative pressure state at the onset of matter domination such that the present epoch is the earliest
possible time consistent with nucleosynthesis restrictions when it can start to dominate.
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Introduction.—Observations of large scale structure,
searches for type Ia supernovae, and measurements of
the cosmic microwave background anisotropy all suggest
that the universe is undergoing cosmic acceleration and
is dominated by a dark energy component with negative
pressure [1]. The dark energy may consist of a cosmologi-
cal constant (vacuum density) or quintessence [2], such as
a scalar field with negative pressure. In either case, a key
challenge is the “cosmic coincidence” problem: Why is
it that the vacuum density or scalar field dominates the
universe only recently? Until now, either cosmic initial
conditions or model parameters (or both) had to be tuned
to explain the low density of the dark energy component.

In this paper, we explore a new class of scalar field mod-
els with novel dynamical properties that avoid the fine-
tuning problem altogether. A feature of these models is
that the negative pressure results from the nonlinear kinetic
energy of the scalar field [3], which we call, for brevity,
k field or k essence. (This consideration is inspired by
earlier studies of k inflation [4,5].) As we will show, for a
broad class of theories, there exist attractor solutions which
determine the equation of state of k essence during dif-
ferent epochs depending on the equation of state of the
background. Effectively, the scalar field changes its speed
of evolution in dynamic response to changes in the back-
ground equation of state. During the radiation-dominated
epoch, k essence is led to be subdominant and to mimic
the equation of state of radiation. Hence, the ratio of k
essence to radiation density remains fixed. When the uni-
verse enters the dust-dominated epoch, though, k essence
is unable to mimic the dustlike equation of state for dy-
namical reasons. Instead, the energy decreases rapidly by
several orders of magnitude and freezes at a fixed value.
After a period (typically corresponding roughly to the cur-
rent age of the universe), the field overtakes the matter
density and drives the universe into cosmic acceleration.
Ultimately, the k-essence equation of state slowly relaxes
to an asymptotic value between 0 and 21. (The reader
0031-9007�00�85(21)�4438(4)$15.00
may wish to sneak a peek at Fig. 3 which illustrates the
behavior in a specific numerical example.)

The use of attractors bears some resemblance to the
quintessence “tracker models” discussed by Zlatev et al.
[6,7], but is in fact very different. In both cases, the scalar
field converges to an attractor solution in which the quin-
tessence field mimics the equation of state of the back-
ground for a long period of time. The key difference is
the mechanism that ends this period and initiates the phase
where the field has negative pressure and drives cosmic
acceleration. In the tracker model, a parameter must be
fine-tuned for this purpose, whereas here the transition oc-
curs through natural dynamical processes.

The distinctive feature of k-essence models is that track-
ing of the background energy density can occur only in the
radiation epoch. At the matter-radiation equality, a sharp
transition of k essence from positive to negative pressure is
automatically triggered by dynamics. The k essence can-
not dominate before matter-radiation equality because it is
exactly tracking the radiation background. It also cannot
dominate immediately after dust domination because its
energy density necessarily drops several orders of magni-
tude at the transition to dust domination. However, since
its energy density decreases more slowly than the matter
density as the universe expands, k essence must dominate
not too long thereafter, at roughly the current epoch. The
resolution of the cosmic coincidence problem boils down
to the fact that we live at the “right time” after matter-
radiation equality.

As noted above, the remarkable behavior comes at the
cost of introducing a nonlinear kinetic energy density func-
tional of the scalar field and adjusting it to obtain the de-
sired attractor behavior. This kind of action may describe
a fundamental scalar field or be a low-energy effective
action. For example, in string and supergravity theories,
nonlinear kinetic terms appear generically in the effec-
tive action describing moduli and massless degrees of
freedom (superpartners) due to higher order gravitational
© 2000 The American Physical Society
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corrections to the Einstein action [8,9]. The attractor
behavior of our models relies on certain broad conditions
on the form of these terms. Our initial examples are admit-
tedly contrived for the purposes of numerical illustration.
A systematic study of model building appears in Ref. [10]
although, having seen here the relatively simple basic
principles, the reader should be equipped to explore more
attractive and better-motivated forms.

Equations.— In the theories we consider the Lagrangian
density for w is taken to be

L � 2
1
6

R 1
1

w2 p̃k�X� 1 Lm , (1)

where R is the Ricci scalar, X � 1
2 �=w�2, Lm is the

Lagrangian density for dust and radiation, and we use units
where 8pG�3 � 1. The energy density of the k field w

is rk � �2Xp̃k,X 2 p̃k��w2; the pressure is pk � p̃k�w2;
the speed of sound of k essence is c2

s � pk,X�rk,X [4,5].
The attractor behavior can be explained most easily by

changing variables from X to y � 1�
p

X and rewriting the
k field Lagrangian as

Lk � p̃k�X��w2 � g� y��w2y . (2)

In this case, the energy density and pressure are rk �
2g0�w2 and pk � g�w2y, where prime indicates deriva-
tive with respect to y. The equation of state is

wk � pk�rk � 2g�yg0 (3)

and the sound speed is c2
s � p0

k�r
0
k � �g 2 g0y��g00y2.

In order to have a sensible, stable theory, we require
rk . 0 and c2

s . 0. These conditions are satisfied if g0 ,

0 and g00 . 0 in the region where p0
k is positive. Therefore,

a general, convex, decreasing function g� y�, such as shown
in Fig. 1, satisfies these necessary conditions. Using the
Friedmann equation: H2 � rtot � rk 1 rm, where rm

is the energy density of matter (radiation and dust), and
the energy conservation equations, �ri � 23ri�1 1 wi�

FIG. 1. A plot of g� y� vs y [see Eq. (2) for definition]
indicating the points discussed in the text. R corresponds
to the attractor solution during the radiation-dominated epoch;
S is the de Sitter attractor at the onset of matter domination; K
is the attractor as k essence dominates. For our range of g� y�,
there is no dustlike attractor solution at y � yD .
for the k essence �i � k� and matter �i � m� components,
we obtain the following equations of motion:
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where N � lna and

r� y� �
µ
2

9
8

g0

∂1�2

y�1 1 wk� �
3

2
p

2

�g 2 g0y�p
2g0

.

(6)

These are the master equations describing the dynamics
of k-essence models. Once some general properties of
g� y� are specified, the attractor behavior described in the
introduction follows from these coupled equations.

Dynamics.—We are seeking a tracker solution y�N�
in which the k-essence equation of state is constant
and exactly equal to the background equation of state,
wk� y�N�� � wm, and the ratio rk�rtot is fixed. Generi-
cally, this requires y�N� be a constant ytr and therefore
rk�rtot � r2� ytr�. The last condition can only be satisfied
if r� ytr� is less than unity. In ranges where r� y� exceeds
unity, there are no attractor solutions.

A radiation attractor corresponds to positive pressure,
so it can be located only at y , yD . Hence, we must have
g� y� such that there is a point yR , yD where r� yR� ,

1 and wk� yR� � 1�3. During the radiation-dominated
epoch, the ratio of k essence to the total density remains
fixed on this attractor and equal to �rk�rtot� � r2� yR�.

In Fig. 1, the pressure pk � g�w2y is positive above the
y axis, and negative below the y axis. The dust equation of
state pk � 0 can be obtained only at y � yD where g� y�
goes through zero. However, this point can be an attractor
only if the second condition, r� yD� , 1, is satisfied. If it
so happens that r� yD� . 1, then there is no dust attractor
in the matter-dominated epoch. This is precisely what we
want for our scenario, and this is possible for a broad class
of functions g.

If g possesses a radiation attractor but no dust attrac-
tor, what happens at dust-radiation equality? To answer
this question let us study the solutions of the master equa-
tions (4)–(6) when the energy density of k essence is much
smaller than the matter energy density. If rk�rm ø 1, one
can neglect the last term in Eq. (4) and it is obvious that
y�N� � yS , where yS satisfies the equation r� yS� � 0, is
an approximate solution of the equations of motion. The
point S satisfies g� yS� � g0� yS�yS , so the tangent of g at
yS passes through the origin, as shown in Fig. 1. Since
r ~ �1 1 wk�, the equation of state of k essence at yS

corresponds to wk� yS� � 21; we call this solution the
de Sitter attractor and denote it by S in Fig. 1. From Fig. 1,
it is clear that yS nearly always exists for convex decreas-
ing functions g. As a result, if rk during the radiation-
dominated epoch is significantly less than the radiation
density which it tracks, which is both typical and required
4439
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to satisfy nucleosynthesis constraints, then k essence pro-
ceeds to the de Sitter attractor immediately after dust-
radiation equality [10].

As the transition to dust domination occurs, rk first
drops to a small, fixed value, as can be simply understood.
Suppose that �rk�rtot�R � r2� yR� � a , 1022 during
the radiation-dominated epoch, where the bound is set by
nucleosynthesis constraints. From the equation of state,
Eq. (3), we have the relation g� yR� � 2g0� yR�yR�3.
The condition r� yD� $ 1 is required in order to have
no dust attractor solution. Combining these relations,
we obtain

g0
Ry2

R

g0
Dy2

D
#

9
16

a , 1022. (7)

On the other hand, it is apparent from Fig. 1 that 2g0
R .

2g0
D , so yR ø yD if a ø 1. In particular, the tangent

at yD falls below g� yR�, so g0
D� yR 2 yD� � 2yDg0

D #

g� yR� � 2yRg0
R�3. Using this relation, we obtain

yR

yD
#

3
16

a , 2 3 1023 and

g0
D

g0
R

#
a

16
, 7 3 1024.

(8)

Since rk � 2g0�w2 and �g0� yS�� # �g0� yD�� we con-
clude that after radiation domination, when the k field
reaches the vicinity of the S attractor, the ratio of en-
ergy densities in k essence and dust does not exceed
�rk�rtot�R 3 g0

D�g0
R; that is, rk�rdust , a2�16 ,

7 3 1026. Hence, provided �rk�rtot�R # 1022 at
dust-radiation equality, the k-essence field loses energy
density on its way to the S attractor down to a value
below 7 3 1026.

By definition, the S attractor is one in which w � 21
and the energy density is nearly constant. Hence, once
rk has reached its small but nonzero value, it freezes.
In the further evolution of the universe, the matter den-
sity decreases, but the k-essence energy density remains
constant, eventually overtaking the matter density of the
universe. Note that, as rk approaches rm, the condition
rk�rm ø 1 is necessarily violated and a new attractor so-
lution is found for the case where k essence itself domi-
nates the background energy density. This attractor is
denoted K in Fig. 1.

To prove that the K attractor exists, we consider
the master equations, Eqs. (4)–(6), in the limit where
rk�rtot ! 1. If yK satisfies the equation r� yK � � 1,
then y�N� � yK is an approximate solution of the
equations of motion. When dust is not a tracker, there
always exists a unique attractor yK in the interval
yD , y , yS [10]. To prove this, note that, within
this interval, the function r� y� has a negative deriva-
tive. Recall that r� yS� � 0 (definition of S attractor)
and r� yD� . 1 (to avoid a dust attractor). Since r� y�
is a monotonically decreasing, continuous function, there
exists a unique point yK ( yD , yK , yS) where r� y�
4440
becomes equal to unity. At y . yD the pressure of k
essence is negative. Hence, generically the K attractor,
located near yK , describes a universe dominated by
a negative pressure component which induces power
law cosmic acceleration. As acceleration proceeds, rk

increasingly dominates and y ! yK .
Following along using Fig. 1, the dynamics can be sum-

marized as follows: k essence is attracted to y � yR dur-
ing the radiation-dominated epoch; at matter domination,
the energy density drops sharply as k essence skips past
y � yD , because there is no dust attractor, and heads to-
wards y � yS . The energy density rk freezes and, after
a period, overtakes the matter density. As it does so, y
relaxes towards yK . In this scenario, our current universe
would be making the transition from yS to yK . All this oc-
curs for generic g� y� satisfying broad conditions on its first
and second derivatives. If the ratio of rk to the radiation
density is near the maximum allowed by nucleosynthesis
(roughly equipartition initial conditions), the scenario pre-
dicts that the rk dominates by the present epoch.

Numerical results.—We have verified these analytic
predictions numerically for a wide class of g� y�. As a
strategy, we look for forms which are roughly linear,

g� y� � 2
1
3

g0
RyR 1 g0

R� y 2 yR� 1 O��y 2 yR�2�

(9)

in the vicinity of radiation attractor R and parabolic

g� y� �
g0

DyD

y2
D 2 y2

S
� y 2 yD�

µ
y 2

y2
S

yD

∂
1 · · · (10)

in the region yD # y # yS . One can easily check that
the points yR , yD , and yS here are, by construction, the
places where the corresponding attractors are located and
g0

R , g0
D are the derivatives of g at the appropriate points.

The results are not sensitive to the precise form of g
that interpolates between these regimes. The main con-
straints are that the attractor solution has a small ratio of
rk�rtot during the radiation epoch and that there is no
dust attractor.

For illustrative purposes, we have used these principles
to obtain a sample p̃�X� in the action, Eq. (1):

p̃k�X� � 22.01 1 2
p

1 1 X 1 0.03�aX�3 2 �bX�4,
(11)

where a � 1025 and b � 1026. For small values of X,
after a field redefinition, this Lagrangian density reduces to
one equivalent to a canonical scalar field with exponential
potential (curiously, a tracker model [6]). The distinctive
dynamical attractor in our models relies on deviations from
linearity at large X.

The results of a numerical integration are presented in
Figs. 2 and 3. We see that k essence tracks the radiation
(wk � 1�3) during the radiation-dominated epoch. Then,
at the onset of matter domination, wk starts to change
and the energy density of k essence suddenly drops by
several orders of magnitude at redshifts about z � 1000
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FIG. 2. The ratio of k-essence energy density, rk , to the den-
sity in radiation and matter, rm, vs redshift. At the present epoch
(dashed line), Vk � 0.7.

as the S attractor is approached and w ! 21. At about
redshift z 	 4, rk becomes non-negligible and wk starts to
increase, ultimately reaching wk � 20.77 at z � 0. The
ratio of the k-essence energy density to the critical density
today is Vk � 0.74. In the future, wk approaches 20.55,
corresponding to the K-attractor solution, and the universe
enters a period of power law k inflation.

Summary.— In this paper, we have presented a scenario
in which cosmic acceleration occurs late in the history of
the universe due to an inevitable sequence of events caused
by attractor dynamics. We view the present work as a
demonstration of principle; hence, we have emphasized
general conditions and an analytic understanding of the
scenario. The specific example illustrated in this paper
is admittedly complex, composed to illustrate the concept,
but we know of no restriction that poses a barrier to finding
simpler and better-motivated forms.

A prediction of k-essence models that distinguishes
them from models based on tracker potentials [7] is that
wk is in the process of increasing today from 21 towards
its asymptotic value at the K attractor, whereas, for track-
ers, wk is undergoing a transition from w � 0 towards
w � 21. A consequence is that the effective value
of wk for k essence—that is, the Vk weighted average of
wk between the present and z � 1—can be significantly
lower than for the tracker potential case, which is bounded
below by weff � 20.75 [7]. In the numerical example
above, the effective weff � 20.84, for example. The
current supernovae data suggest a lower value of wk more
consistent with k essence [11]. Of course, the k-essence
range for wk is more difficult to distinguish from a
cosmological constant (w � 21). In Ref. [10] we also
explore interesting variations of the dynamical scenario
with different kinds of attractors, including some which
can lead to different long-term future outcomes, such as
a return to a pressureless, unaccelerated expansion in the
long-term future.
FIG. 3. The k-essence equation of state vs redshift. The
three attractors in the radiation-, matter-, and k-essence-
dominated epochs are evident. At the present epoch,
wk � 20.77.
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