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We simulate random sequential adsorption of tethered hard disks which undergo limited Monte Carlo
surface diffusion to study kinetics and nonequilibrium phase behavior. Tethers allow the disks to move
within a specified distance of their original adsorption locations, placing a control on the local entropy
of each disk. As the surface coverage increases, systems with sufficiently long tethers form hexatic or
crystalline lattices, while short tethers frustrate organization. Lattices form with surprisingly short tether
lengths —on the order of one disk diameter.

PACS numbers: 05.70.Ln, 64.60.Cn, 68.45.Da, 82.20.Mj
Nonequilibrium systems exhibit markedly different
behavior than better understood equilibrium systems. In
particular, nonequilibrium systems often exhibit state
behavior that is dependent on process history. Here we
manipulate a controlling parameter to tune a model
nonequilibrium system from a purely kinetic process to a
near-equilibrium one.

We present a numerical study of two-dimensional ran-
dom sequential adsorption (RSA) of tethered hard disks.
Adsorbed disks diffuse freely on the surface between
adsorption attempts, but only within the range of a finite-
length tether from the original adsorption location, or
anchor point. By varying the tether length from zero to
infinity, the adsorption process ranges from pure RSA
to a near-equilibrium system. Between these limits, the
effects of varied local freedom on disk organization can
be studied. Furthermore, this model is appropriate for
newly proposed monolayers of tethered nanoparticles,
two-dimensional colloidal glasses, or certain systems of
adsorbed proteins or cells.

In this study, we observe two new phase transitions in
an RSA-type simulation: from liquid to hexatic to crystal,
according to the Kosterlitz-Thouless-Halperin-Nelson-
Young (KTHNY) scheme for phase transitions in two
dimensions [1–3]. The process of sequential adsorption
has a significant effect on the phase behavior of this
nonequilibrium system. In addition, the phase behavior is
coupled to the local entropy of the system as controlled
by the disk tether length, L.

We follow the standard RSA procedure where anchors
tethered to particles (disks) are added to a random location
in a periodically replicated square and overlapping particle
placements are rejected [4]. Our cell is 100R 3 100R,
where R is the radius of an adsorbed particle. Between
adsorption attempts, particles diffuse according to a Monte
Carlo algorithm which selects move magnitudes and direc-
tions from two uniform distributions with a maximum step
side adjusted every cycle (a cycle is defined as N success-
ful moves, where N is the current number of particles) to
30 0031-9007�00�85(21)�4430(4)$15.00
obtain 50% acceptance of moves [5]. Diffusion moves that
place particles outside of the finite range of the tether as
well as those that result in particle-particle overlap are re-
jected. 200 Monte Carlo cycles are completed after every
successful adsorption or after 250 unsuccessful adsorption
attempts, so that the dimensionless ratio of diffusion at-
tempts per particle to adsorption attempts is at least the
long-time value of 8:5. Since most particle adsorption at-
tempts are unsuccessful (1028 success rate at long times),
the rate of surface diffusion far exceeds the rate of particle
addition at long times when the important phase behavior
is observed.

Kinetic results are shown in Fig. 1 for a range of tether
lengths. The tether length does not change the adsorp-
tion kinetics at short times (less than one disk placement
per equivalent disk area). Soon thereafter, near a frac-
tional surface coverage of 0.35, the kinetic curves diverge,
with longer tether-length runs enabling faster and denser

Scaled Time, (γa/A)

C
ov

er
ag

e,
θ

0 0.2 0.4 0.6 0.8 1
0.4

0.6

0.8
L = ∞
L = 2R
L = 1R
L = 0.5R
L = 0.25R
L = 0

θ

-β

∞

Time, γa/A

S
u

rf
ac

e
C

o
ve

ra
g

e,
Θ

10 10 10 10 10
0

0.2

0.4

0.6

0.8 L =
L = 2R
L = 1R
L = 0.5R
L = 0.4R
L = 0.25R
L = 0

3-1 1-3 5

∞

FIG. 1. Kinetic results: Coverage versus time for various
tether lengths, L. Inset: Power law extrapolation of kinetic data
to the jamming limit, u`.
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TABLE I. Kinetic parameters from the power law fit of
Eq. (1). Numbers and error estimates are means and standard
deviations from the set of curve fits with initial times in
ga�A � �1, 3, 10, 30, 100�.

L�R u` a b

0 0.560 6 0.004 0.25 6 0.06 0.45 6 0.05
0.1 0.58 6 0.01 0.18 6 0.04 0.31 6 0.10
0.25 0.64 6 0.01 0.25 6 0.02 0.21 6 0.07
0.5 0.71 6 0.01 0.33 6 0.02 0.18 6 0.03
1 0.76 6 0.02 0.36 6 0.01 0.18 6 0.05
2 0.85 6 0.07 0.42 6 0.03 0.15 6 0.06
8 0.84 6 0.04 0.41 6 0.01 0.15 6 0.06
` 0.82 6 0.03 0.40 6 0.01 0.16 6 0.05

adsorption. The inset of Fig. 1 shows the kinetic data re-
plotted in a power law form (generalizing the form ob-
served first by Feder [4] and derived by Swendsen [6]):

u � u` 2 a�ga�A�b , (1)

where u is the fractional areal coverage on the surface
and g is the number of adsorption attempts normalized
by the area of the simulation cell A and the area of a disk
a. The jamming limit coverage u` and the two kinetic
parameters a and b are fit to the kinetic data at long times
using the Nelder-Mead simplex (direct search) method.
Table I summarizes the kinetic results. For classic RSA
(i.e., L�R � 0), b � 1�2 theoretically [6]. The fit here of
b � 0.45 6 0.05 for a tether length of zero agrees closely.
As L increases, the data continue to fit the power law form
of Eq. (1), and u` increases from 0.55 to 0.85. The kinetic
coefficient a increases from 0.25 to 0.40, and the kinetic
exponent b, often an indicator of the degrees of freedom d
in a system (b � 1�d) [6,7], decreases from 0.45 to 0.16.
Most of the change in the parameters occurs at surprisingly
short tether lengths, on the order of one disk radius. Only a
small amount of local freedom dramatically alters the RSA
kinetics and u`.

The phase behavior or structural evolution of the sys-
tem is monitored by direct observation and the statistical
measures of the pair distribution function g�r� and the ori-
entational distribution function g6�r�. The orientational
distribution function, g6�r� � �c�

6 �0�c6�r��, uses the or-
der parameter c

�j�
6 �

1
z

P
k exp�6iujk� evaluated for each

particle j, where ujk is the orientation angle of the line
connecting the centers of disk j and each of the z neighbor-
ing disks labeled k [8]. Neighbors are defined as all disks
closer than r � 3

p
0.7�u, which corresponds roughly to

the trough between the first and second peak in g�r�.
The correlation functions are averaged spatially over all
particles and also temporally using several sets of diffu-
sion cycles to provide better statistics. Figure 2 shows
snapshots of a simulation with tether length L�R � 5
at 3 times during its evolution, along with the accom-
panying plots of g�r� and g6�r�. The structural evolu-
tion follows the KTHNY phase scheme [1–3] in that we
observe a liquid phase, a hexatic phase, and a crystal
phase. The liquid is characterized by disorder and ex-
ponentially decaying translational and orientational dis-
tribution functions. The hexatic shows a twist along the
lattice direction on direct observation (superimposed line
in Fig. 2) and exponentially decaying translational order
but quasi-long range orientational order as indicated by
the algebraic decay of g6�r�. Finally, the crystal has a
single box-spanning particle array of constant orientation
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FIG. 2. Temporal evolution of KTHNY phase behavior by direct observation, pair distribution function g�r�, and orientational
distribution function g6�r� for tether length L�R � 5. Left to right: ga�A � 35.1, 1.66 3 104, and 1.70 3 105; u � 0.565, 0.707,
and 0.744.
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(straight line in Fig. 2), quasi-long-range translational or-
der 	g�r� � 1�rj
 and true long-range orientational or-
der 	g6�r� � const
. Phase determination for systems at
a given time is determined by plotting g6�r� on semilog
and logarithmic scales and visually evaluating the linearity
of the function decay. Within the resolution of the finite
box size and the oscillations of the g6�r� function, a decay
indicating hexatic order can be distinguished above a slope
of roughly 0.02.

Figure 3 shows the phases observed in the simulations
for a variety of tether lengths. The phases are shown as a
function of simulation time and as a function of surface
coverage. For tether lengths L�R , 1.25, only liquid-
like order is observed. Hexatic order is observed at higher
coverages for 1.25 # L�R # 3.75, except for the case of
L�R � 1.5, where only liquid structure is observed. Sys-
tems with L�R $ 4 develop from the liquid through the
hexatic and finally to the crystalline phase. In general,
the transition to the hexatic phase occurs near u � 0.70,
and the hexatic to crystal transition occurs near u � 0.735.
Systems with L�R , 4, which do not crystallize, have
coverages as high as u � 0.765, well above the hexatic
to crystal transition point at longer tether lengths. Thus,
the tether —or the restricted local mobility — frustrates the
phase transition, and the lack of a phase change is not due
to low disk density. The tether length versus time phase
diagram shows more dramatically how the tethers frustrate
ordering. Relative to those that order, systems that are
frustrated by short tether lengths can undergo an order of
magnitude of time of more diffusion and still not experi-
ence a phase change.

No theoretical derivation exists for RSA systems with
a locally restricted amount of surface diffusion, a case
which represents a straightforward bridge between a com-
pletely kinetic system and an equilibrium system. For
the case of infinite tether length (i.e., free diffusion on
the surface), the power law kinetic extrapolation in Fig. 1
gives the jamming limit of u` � 0.85 which is less than
the close-packed areal fraction of disks in a plane (ucp �
0.9069) expected by some [9]. A perfectly packed surface
exhibits both long-ranged orientational and translational
orders. However, a two-dimensional system is unable to
dissipate long wavelength thermal fluctuations, prohibiting
long-range translational order. Therefore, it is the thermal
fluctuations in the present system that most likely prevent
the RSA process from achieving a close-packed configura-
tion. If this hypothesis is correct, this is an unusual mani-
festation of the symmetry restrictions of two-dimensional
space in that it arises in a dynamical process.

The existence of an equilibrium hexatic phase and the
order of the transition(s) in two dimensions is currently un-
der debate [10,11]. If a hexatic phase does not in fact exist
in an equilibrium system, then the transitions observed in
our simulation are significant because they only occur in
a nonequilibrium process. If the hexatic phase does ex-
ist in equilibrium, then our results demonstrate the ability
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FIG. 3. Phase diagrams of tether length versus coverage (top)
and tether length versus time (bottom). Filled points and error
bars in the top figure represent jamming limit extrapolations
according to Eq. (1).

to control the phase behavior based on the length of the
tethers.

KTHNY-style phase transitions occur in the nonequi-
librium RSA system when adsorbed disks have sufficient
local entropic freedom. In hard sphere systems, crys-
tallization has been interpreted as a sacrifice of global
entropy of liquidlike disorder for the local entropy of in-
dividual spheres within their lattice “cages.” Here, the lo-
cal freedom of each individual particle can be tuned to
either allow or prevent the global restructuring necessary
to complete a phase change. Surprisingly, the liquid-
hexatic phase boundary between 1 # L�R # 2 reveals
that particles need to move only slightly more than one
particle radius to allow hexatic ordering.

There are several caveats to note in this study, including
the finite time of the simulations, finite box-size effects,
and the effect of varying diffusion time. In the tether length
versus coverage phase diagram, there is a significant sepa-
ration between the maximum final coverage in the simula-
tion and the u` boundary. It is fair to wonder if hexatically
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ordered structures will become crystalline given enough
simulation time and additional coverage. The tether length
versus time phase diagram, however, reveals phase bound-
aries that are more tempting to extrapolate. Since the phase
boundaries extend vertically over an order of magnitude
of time, one may infer that the boundaries may persist in-
definitely at the given tether lengths. It may, in fact, be
possible to access more of the phase diagram using experi-
mental nanoparticle systems with covalent tethers. A scal-
ing analysis for 20 nm diameter particles deposited from
a 1% aqueous suspension in a simulation of Natt � 106

adsorption attempts per equivalent particle area shows that
the simulated time is

t �
Natt

fkatt
�

Natts
2

fD
�

Natts
23phs

fkT

�
�106� �20 nm�2�3p� �1 cP� �20 nm�

�0.01� �1.381 3 10223 J�K� �298 K�
� 2000 s ,

(2)

where katt is the rate constant for adsorption attempts per
equivalent particle area, s is the diameter of the particles,
f is the volume fraction of the depositing suspension, D
is the diffusivity of the particles, h is the viscosity of the
liquid, k is Boltzmann’s constant, and T is temperature.
Given this accessible amount of time, it is foreseeable that
these predictions could be verified in experimental systems
of nanoparticles.

The reported phase boundaries and kinetics hold quan-
titatively when doubling or halving the simulation box
length. However, for the largest boxes tested (200R 3

200R), some hexatic phases appeared to exhibit a degree
of polycrystallinity. These results are not discussed here
because more extensive testing is necessary to capture the
polycrystalline phase behavior of large systems.

Changing the amount of diffusion time in the simula-
tions quantitatively affects the phase boundaries. As the
number of diffusion steps per adsorption attempt is in-
creased, the systems achieve the hexatic phase and crys-
talline phases both sooner and for slightly lower tether
lengths. For example, when the diffusion is halved, the
critical tether length necessary to achieve hexagonal order-
ing increases from 1.25R to 1.5R, and when the diffusion is
doubled, the critical tether length to achieve crystalline or-
dering decreases from 4R to 3.75R. Although these shifts
are not large, they emphasize the nonequilibrium nature
of the system arising from the irreversible placement of
particle anchors. Phase changes reported here are process
dependent.

In summary, we have studied the kinetic and structural
phase behavior of the model nonequilibrium process of
assembling a monolayer of disks with locally restricted
surface diffusion. We observe a liquid-hexatic-crystal tran-
sition that follows the KTHNY scheme. Transitions from
liquid to hexatic occur for L�R . 1, and L�R $ 4 is nec-
essary for crystal formation. This study provides timely
insight into the assembly of nanoparticle systems, which
require careful attention to the formation process of su-
perlattice assemblies for use in new applications such as
quantum dot array sensors and memory devices.
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