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How to Measure the Bogoliubov Quasiparticle Amplitudes in a Trapped Condensate
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We propose an experiment, based on two consecutive Bragg pulses, to measure the momentum dis-
tribution of quasiparticle excitations in a trapped Bose gas at low temperature. With the first pulse one
generates a bunch of excitations carrying momentum q, whose Doppler line is measured by the second
pulse. We show that this experiment can provide direct access to the amplitudes uq and yq character-
izing the Bogoliubov transformations from particles to quasiparticles. We simulate the behavior of the
nonuniform gas by numerically solving the time dependent Gross-Pitaevskii equation.

PACS numbers: 05.30.Jp, 03.75.Fi, 32.80.–t, 67.40.Db
More than 50 years ago Bogoliubov [1] developed the
microscopic theory of weakly interacting Bose gases. A
crucial step of the theory is given by the so called Bogoli-
ubov transformations

bq � uqaq 1 yqay
2q , (1)

by
q � uqay

q 1 yqa2q , (2)

which transform particle creation a and annihilation ay

operators into the corresponding quasiparticle operators b
and by. The real coefficients uq and yq are known as
quasiparticle amplitudes. The Bogoliubov transformations
are the combined effect of gauge symmetry breaking and
of the interactions which are responsible for the mixing
between the particle creation and annihilation operators.
In virtue of transformations (1) and (2), the many-body
Hamiltonian of the weakly interacting Bose gas becomes
diagonal in the bq’s, representing a system of free quasi-
particles whose energy is given by the famous Bogoliubov
dispersion law:

e�q� �

∑
q2c2 1

µ
q2

2m

∂2∏1�2

. (3)

In Eq. (3), c � �gn�m�1�2 is the sound velocity fixed by
the density of the gas n and by the parameter g char-
acterizing the interaction term g

P
i,j d�ri 2 rj� of the

many-body Hamiltonian. The interaction parameter g is
determined by the s-wave scattering length a through the
relation g � 4p h̄2a�m. The dispersion law (3) fixes the
value of the quasiparticle amplitudes uq and yq, which can
be written as

uq, yq � 6
e�q� 6 q2�2m

2
p

e�q�q2�2m
; (4)

and satisfy the normalization condition u2
q 2 y2

q � 1. At
low momentum transfer (q2�2m ø mc2) the Bogoliubov
excitations are phonons characterized by the linear disper-
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sion law e � qc and the amplitudes uq and yq exhibit
the infrared divergence uq � 2yq � �mc�2q�1�2. Vice
versa, at high momentum transfer the dispersion law (3)
approaches the free energy q2�2m and the Bogoliubov am-
plitudes take the ideal gas values uq � 1, yq � 0.

Bogoliubov’s theory has been developed also for
nonuniform gases. The theory has proved to be an excel-
lent approximation for trapped Bose-Einstein condensates
of alkali atoms. In particular, it has been successfully
used to interpret the available experimental results on the
propagation of phonons, namely, the excitation of the low-
est frequency modes [2,3], corresponding to discretized
phonon oscillations of the system [4,5], the generation
of wave packets propagating in the medium with the
speed of sound [6], and the excitation of phonons through
inelastic photon scattering [7]. In the latter cases, the
dispersion law (3) can be defined locally through the den-
sity dependence of the sound velocity. All these experi-
ments, however, reveal the propagation of phonons only
in coordinate space, where the equations of motion take
the classical hydrodynamic form, and not in momentum
space, where Bogoliubov’s transformations (1) and (2)
exhibit their peculiar character.

In this work we suggest a procedure to measure the Bo-
goliubov parameters uq and yq in a trapped Bose-Einstein
condensed gas. Our strategy is based on the following two
steps:

(A) First, one generates a collection of quasiparticles
in the sample by means of the technique already used in
[7]. This is based on an inelastic collisional process (two
photon Bragg scattering) which can be implemented with
two detuned lasers transferring momentum q and energy
h̄v to the sample. Here q � h̄�k1 2 k2� and v � �v1 2

v2� are fixed by the difference of the wave vectors and
the corresponding frequencies of the two lasers. In order
to excite quasiparticles in the phonon regime one should
satisfy the condition q , mc. Let us call Nph the number
of quasiparticles with momentum q generated by this first
Bragg pulse and let us assume, for simplicity, that the
© 2000 The American Physical Society
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system can be treated as a uniform gas. According to the
Bogoliubov transformations (1) and (2), the momentum
distribution of the gas will be modified as

n�p� � n0�p� 1 Nph�u2
qd�p 2 q� 1 y2

qd�p 1 q�� ,
(5)

where n0�p� is the momentum distribution at equilibrium
and d is the usual d function. Equation (5) reveals the
occurrence of two new terms describing particles propa-
gating with directions parallel and antiparallel to the mo-
mentum q of the quasiparticles (hereafter called phonons)
and weights proportional, respectively, to u2

q and y2
q. The

total momentum, P �
R

dp p n�p� carried by the system,
is equal to qNph, as a result of the normalization condition
u2

q 2 y2
q � 1.

(B) In the second step of the experiment one measures
the momentum distribution (5) by sending a second Bragg
pulse immediately after the first Bragg pulse. The momen-
tum Q, and the energy h̄V transferred by the second pulse
should be much larger than the ones of the first pulse since,
in order to be sensitive to the momentum distribution of the
sample, the scattering should probe the individual motion
of particles [8,9]. More precisely, one must satisfy the con-
dition h̄V � Q2�2m ¿ mc2. The measured quantity is
the dynamic structure factor which, in the large Q regime,
takes the form [10]

S�Q, V� �
m
Q

Z
dpx dpy n�px , py , pz� , (6)

where pz � m�h̄V 2 Q2�2m��Q and we have assumed
Q to be directed along the z axis. By inserting (5) into
(6), one finds that the dynamic structure factor exhibits,
in addition to the original peak located at V � Q2�2mh̄,
two side peaks at

V6 �
Q2

2mh̄
6

q ? Q
mh̄

. (7)

By denoting with S1 and S2 their contributions to the
integrated strength

R
dV S�Q, V� � N , one finds S1 �

Nphu2
q and S2 � Nphy2

q or, equivalently, Nph � S1 2

S2 and y2
q � S2��S1 2 S2�. If the quantity S1 1 S2 �

Nph�u2
q 1 y2

q� is much smaller than N , the normalization
of the central peak remains close to the unperturbed value
N . From the above discussion one concludes that the mea-
surement of the dynamic structure factor at high momen-
tum transfer Q and, in particular, of the two strengths S6

would provide direct access to the number of phonons gen-
erated with the first Bragg pulse, as well as to the value of
the corresponding quasiparticle amplitudes.

Expression (6) for the dynamic structure factor ignores
the effects of the final state interactions which are respon-
sible for both the line shift of the curve S�Q, V�, as a
function of V, and for its broadening. These effects can
be safely calculated within Bogoliubov’s theory and, in the
large Q domain, are both fixed by the chemical potential
of the gas [8,9]. The broadening due to mean field effects
should not be confused with the Doppler broadening in-
cluded in Eq. (6). The latter is due to the fact that, even
in the equilibrium configuration, the momentum distribu-
tion of a condensate of axial size Rz has a width �h̄�Rz .
The width of S�Q, V� is then proportional to h̄Q�Rz . In
the following, we will consider highly elongated conden-
sates so that the relevant values of q are always larger than
h̄�Rz and the Doppler broadening, due to the finite size of
the system, can be ignored. For a safe identification of the
two phonon peaks (7) and of the corresponding strengths
S6 it is crucial that the separation DV � 6�q ? Q��mh̄
between the phonon and central peaks be larger than the
mean-field effect. This imposes the condition

qQ�m . m , (8)

where we have chosen the two vectors q and Q parallel in
order to maximize the separation DV. Equation (8), to-
gether with the condition q ¿ h̄�Rz , shows that the mo-
mentum q of the phonons generated by the first Bragg
pulse should not be too small.

In the second part of the work we explore in detail the
microscopic mechanisms of generation of phonons pro-
duced by the first Bragg pulse, taking into account the
fact that our system is nonuniform and that the time du-
ration of the pulse is finite. We consider a gas of inter-
acting atoms initially confined by a harmonic potential of
the form Vho�x, y, z� � m�v2

��x2 1 y2� 1 v2
z z2��2. The

generation of phonons is analyzed through the numerical
solution of the time dependent Gross-Pitaevskii equation
for the order parameter C�r, t� [5] in the presence of the
additional external potential

VBragg�z, t� � Vf�t� cos�qz�h̄ 2 vt� , (9)

which reproduces the effects of the inelastic scattering as-
sociated with the two photon Bragg pulses directed along
the axial z direction (see, for example, Ref. [11]). In
Eq. (9) the parameter V is the strength of the Bragg pulse
while the envelope function f�t� was chosen of the form
f�t� � 1

2 �1 1 tanh
°
t�tup

¢
�, and f�t� � 0 for t . tB. Here

tB is the duration of the Bragg pulse, while tup fixes its
rise time. By varying the values of q and v of the per-
turbation (9) different regions of the nonuniform gas are
excited with different intensity. In fact, according to the
Bogoliubov dispersion (3), the condensate is in resonance
with the periodic perturbation cos�qz�h̄ 2 vt� for val-
ues of the density satisfying the condition c2 � gn�m �
�h̄2v2 2 �q2�2m�2��q2.

The ground state, corresponding to the stationary solu-
tion of the Gross-Pitaevskii equation at large negative times
t, was obtained by means of the steepest descent method
[12]. For the time dependent solutions we have used a nu-
merical code developed in Ref. [13], suitable for axially
symmetric condensates. The parameter V has been chosen
in order to generate a number of phonons corresponding
to 5%–10% of the total number of atoms. In this way,
one produces a visible bunch of excitations whose features
4423
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can be still described using linear response theory. Higher
values of V were also considered to explore nonlinear ef-
fects. The Bragg pulse duration tB was always taken to
be significantly less than the oscillation time in the axial
direction. This requirement is needed in order to relate
the total momentum transferred by the photons with the
actual momentum carried by the system at the end of the
first Bragg pulse, thereby ignoring the effects of the ex-
ternal force produced by the harmonic potential during the
pulse. This condition is well satisfied in the experiment of
Ref. [7] where the total momentum Pz of the condensate
was measured after the Bragg pulse.

An example of the density jC�r, tB�j2 as a func-
tion of z and for r� � �x2 1 y2�1�2 � 0, is shown in
Fig. 1. The condensate in this figure has N � 6 3 107

sodium atoms confined in a trap with v� � 2p 3 150 Hz
and vz � 0.12v�. This corresponds to a Thomas-Fermi
parameter Na�a� � 10 000, where a� � �h̄�mv��1�2.
We have chosen a duration of the Bragg pulse tB � 0.25 3

2p�v� (�1.7 ms) and intensity V � 1.25h̄v�. The
values of q and v are q � 1h̄�a� and v � 4.13v�.
With these parameters we are close to the phonon regime
(q2�2m � 0.02mc2).

In Fig. 2 we give the corresponding prediction for the
dynamic structure factor S�Q, V�, measurable with the
second Bragg pulse. This quantity is evaluated in impulse
approximation and is determined by the longitudinal mo-
mentum distribution, as in Eq. (6),Z

dpx dpy n�px , py , pz� �
Z

dx0 dy0 dz0 dz e2ipz�z2z0�� h̄

3 C��x0, y0, z, tB�
3 C�x0, y0, z0, tB� , (10)

where pz � m�h̄V 2 Q2�2m��Q. Final state interaction
effects are ignored in this approximation, but they do not
affect the conclusions of our analysis provided condition
(8) is satisfied.

Figure 2 clearly shows the appearance of the two peaks
in S�Q, V� at the frequencies predicted by Eq. (7). The

FIG. 1. Density profile of the condensate as a function of z
evaluated at r� � 0 after the first Bragg pulse.
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difference S1 2 S2 between their strengths gives the
number of phonons Nph; this turns out to be �6 3 106,
i.e., about 10% of the total number of atoms. We have
verified that the results are independent of the choice of
the rise time of the pulse, provided tup # 0.05 2p�v�.
We have also checked that the system responds in a
linear way, by verifying that the value of Pz increases
quadratically with V up to V � 3h̄v�; moreover, for
sufficiently long times, the number of phonons generated
by the pulse increases linearly with tB as predicted by
perturbation theory. We point out that condition (8),
which ensures the visibility of the two peaks in S�Q, V�,
can be satisfied with reasonable choices of the momentum
Q of the second Bragg pulse. Taking, for example, the
value Q � 21 mm21 [8], we get Qq�m � 36h̄v�, to be
compared with the value m � 25h̄v� of the chemical
potential. It is finally worth noticing that, since each
phonon carries momentum q, their number can also be
obtained by measuring the total momentum Pz after the
first Bragg pulse, as done in the experiment of Ref. [7]:
Nph � Pz�q. This is useful when q ø mc, since in
this case S1 � S2 and the difference S1 2 S2 may be
difficult to extract.

The strengths S6 can be used to estimate the value of
y2

q. Our results are given in Fig. 3 as a function of the
first Bragg pulse duration. The three curves have been
obtained with different choices for the transferred energy
and momentum, v and q, but they correspond to the same
resonant density, i.e., the Bragg pulse excites the system in
resonance at the same density (�0.67 of the central value).
The conditions for such resonant behavior have been taken
from the local density approximation discussed in [9]. Be-
cause of the different values of q, the three curves cor-
respond also to different values of y2

q, since this quantity
depends on q and on the density through the ratio mgn�q2,
as predicted by Eqs. (3) and (4). Our results clearly show
this effect. In order to make the analysis more quantita-
tive, we also report, for each curve, the value predicted by
Eq. (4) with e�q� � h̄v. In the case of a periodic pertur-
bation in a uniform gas the calculated curves of yq should

FIG. 2. Dynamic structure factor as a function of pz �
m�h̄V 2 Q2�2m��Q after the first Bragg pulse.



VOLUME 85, NUMBER 21 P H Y S I C A L R E V I E W L E T T E R S 20 NOVEMBER 2000
FIG. 3. y2
q as a function of time for different choices of q

(in units of h̄�a�) and v (in units of v�). In order, from top
to bottom: q � 1, v � 4.13; q � 1.5, v � 6.25, and q � 2,
v � 8.44. The values predicted by Eq. (4) are also reported.

coincide with prediction (4). In our calculations we find
that the values of y2

q exhibit oscillations with frequency
2v and a slight decrease as a function of time. The be-
havior of y2

q at short times is the consequence of the high
frequency components contained in the Fourier transform
of the Bragg potential (9), whose effects cannot be simply
described employing a local density picture. The decrease
of the signal at larger times is probably the consequence
of the diffusion of phonons towards regions of lower den-
sity as well as of nonlinear effects. Despite these effects,
Fig. 3 clearly reveals the important features predicted by
Bogoliubov theory for the quasiparticle amplitude y and,
in particular, its dependence on the relevant parameters of
the system.

The results of Figs. 1–3 refer to conditions of linear or
almost linear regime. It is also interesting to explore the
response of the condensate to a highly nonlinear perturba-
tion generating a number of excitations comparable to the
total number of atoms. This can be achieved by increasing
the strength V of the Bragg pulse. In Fig. 4 we show
the dynamic structure factor S�Q, V� calculated after
the first Bragg pulse, in conditions of high nonlinearity
(V � 25h̄v�). Remarkably, the pz � 0 peak, corre-
sponding to the initial condensate, has almost disappeared.
In this case, the appearance of additional peaks, associated
with the second and third harmonics pz � 62q and
pz � 63q in the longitudinal momentum distribution,
is clearly visible. Obviously, the connection between
the structure of these side peaks and the quasiparticle
amplitudes u and y is less direct than in the linear regime.
Further analysis is under way, also in view of future
experiments.

In conclusion, we have suggested an experimental
method to measure Bogoliubov’s quasiparticle amplitudes
in a trapped Bose gas at low temperature. In such an
FIG. 4. Same as Fig. 2. Here V is large in order to drive the
system out of the linear regime.

experiment, the condensate is hit by a sequence of two
Bragg pulses. The first (low q momentum transfer) pulse
generates a collection of phonons which are subsequently
mapped in momentum space by the second (high Q) pulse.
A numerical simulation has allowed us to test our predic-
tions and to show that our proposal is compatible with
the presently available experimental possibilities. This
experiment would provide the first direct measurement
of the Bogoliubov quasiparticle amplitudes, which are of
fundamental importance in the theory of Bose-Einstein
condensation.
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