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Violations of Local Realism by Two Entangled N-Dimensional Systems
Are Stronger than for Two Qubits
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Tests of local realism versus quantum mechanics based on Bell’s inequality employ two entangled
qubits. We investigate the general case of two entangled quantum systems defined in N-dimensional
Hilbert spaces, or “quN its.” Via a numerical linear optimization method we show that violations of local
realism are stronger for two maximally entangled quN its (3 # N # 9) than for two qubits and that they
increase with N . The two quN it measurements can be experimentally realized using entangled photons
and unbiased multiport beam splitters.

PACS numbers: 03.65.Bz, 42.50.Dv
Bell [1] has shown that no local realistic models can
agree with all quantum mechanical predictions for the
maximally entangled states of two two-state systems
(qubits). After some years researchers started to ask ques-
tions about the Bell theorem for more complicated systems.
The most surprising answer came from the Greenberger-
Horne-Zeilinger (GHZ) theorem [2]: for three or more
qubits the conflict between local realism and quantum
mechanics is much sharper than for two qubits. The other
possible extensions are entangled states of pairs of N-state
systems, “quN its,” with N $ 3. First results, in 1980–
1982, suggested that the conflict between local realism
and quantum mechanics diminishes with growing N [3].
This was felt to be in concurrence with the old quantum
wisdom of higher quantum numbers leading to a quasi-
classical behavior. However, that early research was
confined to Stern-Gerlach–type measurements performed
on pairs of entangled N21

2 spins [3]. Since operation of a
Stern-Gerlach device depends solely on the orientation of
the quantization axis, i.e., on only two parameters, devices
of this kind cannot make projections into arbitrary states
of the subsystems. That is, they cannot make full use of
the richness of the N-dimensional Hilbert space.

In the early 1990’s Peres and Gisin [4] considered cer-
tain dichotomic observables applied to maximally entan-
gled pairs of quN its. They showed that the violation of
local realism, or more precisely of the Clauser-Horne-
Shimony-Holt [1] inequalities, survives the limit of N !
`, but never exceeds the violation by two qubits, in agree-
ment with the Cirel’son limit [5], i.e., it is limited by the
factor of

p
2. Therefore, the question whether the viola-

tion of local realism increases or not with growing N for
general observables was still left open.

To answer this question it is necessary first to adopt an
objective measure of the magnitude of violation of local
realism. To this end, consider two quN it systems described
by mixed states in the form of

rN �FN � � FNrnoise 1 �1 2 FN � jCN
max� �CN

maxj , (1)
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where the positive parameter FN # 1 determines the
“noise fraction” within the full state, rnoise � 1

N2 Î, and
jCN

max� is a maximally entangled two quN it state, say

jCN
max� �

1
p

N

NX
m�1

jm�Ajm�B . (2)

In (2) jm�A (jm�B) describes particle A (B) in its mode m.
One has x�m jm0�x � dm,m0 , with x � A, B. The thresh-
old maximal Fmax

N , for which the state rN �FN � still does
not allow a local realistic model, will be our value of the
strength of violation of local realism. The higher Fmax

N the
higher noise admixture will be required to hide the non-
classicality of the quantum prediction. In experiments the
visibility parameter V , effectively equivalent to 1 2 FN , is
the usual measure of the reduction of interferometric con-
trast (visibility).

We shall study the case of two observers Alice and Bob
performing measurements of local nondegenerate observ-
ables, each on her/his quN it of an entangled pair in the
state rN �FN �. Let us imagine that Alice can choose be-
tween two nondegenerate observables A1 and A2, and that
each observable is defined such that it has the full spectrum
characterized by all integers from k � 1 to N . Bob can
choose between B1 and B2, both with the same spectrum
as above (l � 1, 2, . . . , N). Thus, the observers can per-
form 2 3 2 mutually exclusive global experiments. The
quantum probability for the specific pair of results, k for
Alice and l for Bob, provided a specific pair of local ob-
servables is chosen, Ai by Alice and Bj by Bob, will be
denoted by P

QM
FN

�k; l jAi , Bj�. Quantum mechanics makes
predictions for the complete set of 4N2 such probabilities,
and nothing more.

The hypothesis of local hidden variables tries to go be-
yond. The basic assumption there is that each particle
carries a probabilistic or deterministic set of instructions
how to respond to all possible local measurements it might
be subject to. Therefore local realism assumes the exis-
tence of non-negative joint probabilities involving all pos-
sible observations from which it should be possible to
© 2000 The American Physical Society
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obtain all the quantum predictions as marginals (see, e.g.,
[6,7]). Let us denote these hypothetical probabilities by
PHV �k, m; l, n jA1, A2, B1, B2�, where k and m represent
the outcome values for Alice’s observables (l and n for
Bob’s). In quantum mechanics one cannot even define
such objects, since they involve mutually incompatible
measurements. The local hidden variable probabilities for
the experimentally observed events, k (m) by Alice mea-
suring A1 (A2), and l (n) by Bob measuring B1 (B2), are
the marginals

PHV �k; l jA1, B1� �
X
m

X
n

PHV �k, m; l, n� ,

PHV �k; n jA1, B2� �
X
m

X
l

PHV �k, m; l, n� ,

PHV �m; l jA2, B1� �
X
k

X
n

PHV �k, m; l, n� ,

(3)

PHV �m; n jA2, B2� �
X
k

X
l

PHV �k, m; l, n� ,

where PHV �k, m; l, n� is a shorthand notation for
PHV �k, m; l, n jA1, A2, B1, B2�. The 4N2 equations (3)
form the full set of necessary and sufficient conditions
for the existence of a local realistic description of the
experiment, i.e., for the joint probability distribution
PHV �k, m; l, n�. The Bell theorem says that certain
predictions by quantum mechanics are in conflict with
the local hidden variable model (3). Evidently, the
conflict disappears when enough noise is added, as in
the state (1), since that noise has a local realistic model.
Therefore a threshold Fmax

N exists below which one cannot
have any local realistic model with PHV �k; l jAi , Bj� �

P
QM
FN

�k; l jAi , Bj�. Our goal is to find observables for the
two quN its returning the highest possible critical Fmax

N .
Up to date, no one has derived Bell-type inequalities that

are necessary and sufficient conditions for (3) to hold, with
the exception of the N � 2 case (see [7]). However there
are numerical tools, in the form of the very well-developed
theory and methods of linear optimization, which are per-
fectly suited for tackling exactly such problems directly,
without any Bell inequalities [8].

The quantum probabilities, when the state is given by
(1), have the following structure:

P
QM
FN

�k; l jAi , Bj� �
1

N2 FN

1 �1 2 FN �PQM�k; l jAi , Bj� ,
(4)

where PQM�k; l jAi , Bj� is the probability for the given
pair of events for the pure maximally entangled state.
The set of conditions (3) with P

QM
FN

�k; l jAi , Bj� replac-
ing PHV �k; l jAi , Bj� imposes linear constraints on the N4
“hidden probabilities” PHV �k, m; l, n� and on the parame-
ter FN , which are the non-negative unknowns. We have
more unknowns (N4 1 1) than equations (4N2 1 1, with
the normalization condition for the hidden probabilities),
and we want to find the minimal FN for which the set
of constraints can still be satisfied. This is a typical lin-
ear optimization problem for which lots of excellent algo-
rithms exist. We have used the state-of-the-art algorithm
HOPDM 2.30 (higher order primal dual method) [9]. It is
important to stress that for cross checking four indepen-
dently written codes were used, one of them employing
a different linear optimization procedure (from the NAG
Library).

We were interested in finding such observables for
which the threshold FN acquires the highest possible
value. To find optimal sets of observables we have used
a numerical procedure based on the downhill simplex
method (so-called amoeba) [10]. If the dimension of the
domain of a function is D (in our case D � 4n, where n
is the number of parameters specifying the nondegenerate
local observables belonging to a chosen family), the
procedure first randomly generates D 1 1 points. In this
way it creates the vertices of a starting simplex. Next it
calculates the value of the function at the vertices and
starts exploring the space by stretching and contracting
the simplex. In every step, when it finds vertices where
the value of the function is higher than in others, it “goes”
in this direction (see, e.g., [10]).

Let us now move to the question of finding a family of
observables, which returns critical FN ’s that are above the
well-known threshold for the two qubit case, 1 2

1
p

2
. As

was said earlier, and was confirmed by our numerical re-
sults, Stern-Gerlach– type measurements are not suitable.
More exotic observables are needed.

First we discuss how experiments on two entangled
quN its might be performed. In view of the unavailability
of higher spin entanglement it is fortunate that quN it entan-
glement can be studied exploiting momentum conservation
in the many processes of the two-particle generation, most
notably in the parametric down-conversion generation of
entangled photon pairs. This results in strong correlations
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FIG. 1. The experiment of Alice and Bob with entangled
quN its. Each of their measuring apparatuses consist of a set of
N phase shifters just in front of a 2N port Bell multiport, and
N photon detectors Dk , Dl (perfect, in the gedanken situation
described here) which register photons in the output ports of
the device. The phase shifters serve the role of the devices
which set the free macroscopic, classical parameters that can
be controlled by the experimenters. The source produces a
beam-entangled two-particle state.
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between the propagation directions of the particles in a
pair. One can then submit N spatial modes of each par-
ticle to a multiport beam splitter [11].

Application of multiports in the context of quantum
entanglement has been first discussed by Klyshko [12].
Proposals of Bell experiments with the multiports were
presented in [13], and further developed in [11]. Multiport
devices can reproduce all finite dimensional unitary trans-
formations for single-photon states [14], therefore they are
characterized by N2 2 1 real parameters.

In order to limit computer time we restricted our analy-
sis to unbiased multiports [11], more specifically to Bell
multiports. Unbiased multiports have the property that a
photon entering into any single input port (out of the N),
has equal chances to exit from any output port. In addi-
tion, for Bell multiports [11] the elements of their unitary
transition matrix, UN , are solely powers of the N th root of
unity gN � exp�i2p�N�, namely, UN

ji �
1

p
N

g
� j21��i21�
N .
4420
Let us now imagine two spatially separated experi-
menters who perform the experiment of Fig. 1 (described
in the caption). The initial maximally entangled state
(2) of the two quN its can be prepared with the aid of
parametric down-conversion (see [11]). The two sets of
phase shifters at the inputs of the multiports (one phase
shifter in each beam) introduce phase factor ei�fm

A 1f
m
B � in

front of the mth component of the state (2), where f
m
A

and f
m
B denote the local phase shifts.

Each set of local phase shifts constitutes the interfero-
metric realizations of the “knobs” at the disposal of the
observer controlling the local measuring apparatus, which
incorporates also the Bell multiport and N detectors. In
this way the local observable is defined. Its eigenvalues
refer simply to registration at one of the N detectors be-
hind the multiport. The quantum prediction for the joint
probability P

QM
FN

�k, l� to detect a photon at the kth output
of the multiport A and another one at the lth output of the
multiport B is given by [11]
P
QM
FN

�k, l; f1
A, . . . , fN

A , f1
B, . . . , fN

B � �
FN

N2 1
1 2 FN

N

É
NX

m�1

exp�i�fm
A 1 fm

B ��UN
mkUN

ml

É2

�

µ
1

N3

∂ "
N 1 2�1 2 FN �

NX
m.n

cos�Fm
kl 2 Fn

kl�

#
, (5)
where Fm
kl � f

m
A 1 f

m
B 1 �m�k 1 l 2 2�� 2p

N . The
counts at a single detector, of course, are constant, and
do not depend upon the local phase settings: P

QM
FN

�k� �
P

QM
FN

�l� � 1�N .
The numerical values of the threshold FN are given in

Fig. 2. It is evident that indeed two entangled quN its
violate local realism stronger than two entangled qubits,
and that the violation increases monotonically with N . It
is tempting to contemplate the limit of N ! `. While
obviously the values of Fmax

N seem to saturate, at present
we cannot give a definite asymptotic value.

A few words of comment are needed. One may argue
that because of the rather large number of local macro-
scopic parameters (the phases) defining the function to be
maximized with the amoeba we could have missed the
global minimum. While this argument cannot be ruled out
in principle, we stress that in that case the ultimate vio-
lation would even be larger. This would only strengthen
our conclusion that two entangled quN its are in stronger
conflict with local realism than two entangled qubits.

Based on the numerical results, i.e., the values of the op-
timal phase settings, and on the structure of the local hid-
den variable model for Fmax

3 , an algebraic calculation was
performed [15] showing that for the two qutrits �N � 3�
experiment the exact value for Fmax

3 is 1126
p

3
2 . One should

also mention that for two spin 1 particles in a singlet state
observed by two Stern-Gerlach apparatuses our method
gives FSG

3 � 0.1945, which is much smaller than 1 2
1
p

2
,

confirming that such measurements are not optimal in the
sense of leading to maximal possible violations of local
realism.

An important question is whether unbiased Bell multi-
ports provide us with a family of observables in maximal
conflict with local realism. For a check of this question we
have also calculated the threshold value of F3 for the case
where both observers apply to the incoming qutrit the most
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FIG. 2. Maximal fraction Fmax
N of pure noise admixture to a

maximally entangled two quN it system, such that a local real-
istic explanation still cannot be upheld. For smaller noise frac-
tions a conflict arises between quantum mechanics and local
realism. The result for N � 2 agrees with the standard thresh-
old of 1 2

1
p

2
.
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general unitary transformation belonging to a full SU(3)
group (i.e., we have any trichotomic observables on each
side). Again we have assumed that each observer chooses
between two sets of local settings. However, in this case
each set consists of eight local settings rather than the three
(effectively two) in the tritter case. The result appears to
be the same as for two tritters. While this might suggest
that for N � 3 Bell multiports are optimal devices to test
quantum mechanics against local realism, this needs to be
further investigated.

It is interesting to compare our results with the limit for
the nonseparability of the density matrices (1). The critical
minimal FN for which a density matrix (1) is separable is

N
N11 (see [16]). The fact that this limit is always higher
than ours indicates that the requirement of having a local
quantum description of the two subsystems is a much more
stringent condition than the requirement of admitting any
possible local realistic model.

It will be interesting to consider within our approach dif-
ferent families of states, generalizations to more than two
particles, extensions of the families of observables, and
to see if more than two (e.g., A1, A2, A3) experiments per-
formed on either side can lead to even stronger violations
of local realism. The questions concerning the critical FN

are also important in the attempts to generalize Ekert’s
quantum cryptographic protocol to qutrits and higher sys-
tems [17].

Our method is numerical and is based on linear op-
timization. It is a development of the approach of [8].
The exploding (with N) difficulty of approaching this type
of problems via algebraic-analytical methods (generalized
Bell inequalities, via the Farkas lemma, etc.) has been ex-
posed in [7].

It will certainly be fascinating to see laboratory realiza-
tions of the experimental schemes discussed here.
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Horne, and M. Żukowski, in Quantum Control and Mea-
surement, edited by H. Ezawa and Y. Murayama (Elsevier,
New York, 1993); A. Zeilinger, M. Żukowski, M. A. Horne,
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[16] M. Horodecki and P. Horodecki, Phys. Rev. A 59, 4206

(1999).
[17] H. Bechmann-Pasquinicci and W. Tittel, quant-ph/

9910095.
4421


