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Bogoyavlenskij Replies: The hypothesis formulated in
[1], and which in [2] is referred to as “Parker’s hypothe-
sis,” concerns invariant properties of small perturbations
ebj�x, y, z� near a z-invariant plasma equilibrium magnetic
field B�x, y�. Parker’s hypothesis is formulated under three
important conditions [1]: (1) “the local perturbation to the
field is small compared to the total field,” p. 361; (2) the
length of the flux tube L is “large compared to the charac-
teristic transverse scale of variation � of the field,” p. 362;
(3) “the magnetic field is analytic in its deviation e from
the invariant field Bi�x, y�,” p. 378.

Parker claims that a counterexample to Parker’s hy-
pothesis was provided by Rosner and Knobloch in 1982.
However, the example of [3] involves two plasma equi-
librium magnetic fields B0�x, y� and B1� y, z� where the
first is z-invariant and the second, x-invariant. They treat
B1� y, z� as a perturbation of B0�x, y� and notice that
B1� y, z� is not z-invariant. But such a perturbation adds
an infinite magnetic energy in any layer c1 , z , c2, so
it is not small. Nor does it satisfy Parker’s condition (2).
Moreover, the only exact solutions presented in [3]
have singularities: “B0�x, y� � �x2 1 y2�21�2y, x, 0�,
B1� y, z� � � y2 1 z2�21�0, 2z, y�, (3.10).” Hence, the
case treated in [3] is different from the one treated in [1].

Similarly, the work by Van Ballegooijen [4] cannot re-
ally be considered to supply a counterexample. Using an
expansion parameter different from [1], Van Ballegooijen
constructs the force-free perturbations, p � const, of a
constant uniform magnetic field B0 which depend on z.
The lowest order equation [4] is equivalent to the time
dependent two dimensional vorticity equation. However
the complete solution in [4] is presented in the form of
an infinite power series obtained by subsequent resolv-
ing of a more complex system of partial differential equa-
tions. Whether this power series is well behaved in �3

and whether it satisfies Parker’s condition (2) is not stud-
ied. No exact solutions are obtained in [4] and the author
writes: “Our conclusions do not apply to systems with field
lines that are not tied to a boundary. Examples of such sys-
tems are the toroidal fields used in fusion machines (e.g.,
tokamaks),” p. 426. The plasma equilibria derived in [2]
are exactly of this type, with toroidal magnetic surfaces
and with p fi const.

Later, in [5], the generalizations of Parker’s hypothe-
sis for MHD [6] are reviewed and the statement is called
“Parker’s theorem.” The authors of [7] (1993) continue
this characterization of Parker’s hypothesis as an estab-
lished fact when they write: “It is well known that all well-
behaved MHD equilibria extending to all space need to be
translationally symmetric,” p. 2158.

The exact global plasma equilibria derived in [2] model
the astrophysical jets and behave ergodically in variable
z. They have finite magnetic energy in any layer c1 ,

z , c2 and satisfy all three of Parker’s conditions. These
exact solutions prove without intersection with [3,4], that
much more complex topologies of magnetic surfaces than
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suggested in [4] do appear in the arbitrarily small analytical
perturbations of the z-invariant equilibria.

In [8], Parker returns to his statement made in [1] that
any bounded solution to the equation
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is constant if B � B�x, y� is nonvanishing everywhere.
The statement is used as a key argument in the proof [1] of
Parker’s hypothesis and also in the proof [6] of its general-
ization for MHD. The use of this statement [1] is a logical
error. Indeed, let us consider one concrete example of [2]:

B�x, y� � �1 1 �ax 1 by�2�21�2,

C�x, y� � tan21�ax 1 by� ,
(2)

where tan21�z� is the inverse function for tan�z� and a, b �
const. Function B�x, y� (2) does satisfy Parker’s con-
dition because it is “nonvanishing throughout the entire
space, 2` , x, y , 1`” [8]. Function C�x, y� (2) sat-
isfies Eq. (1). It is bounded, jC�x, y�j , p�2, and it is
nonconstant. Hence Parker’s statement [1], repeated in
[8], is a logical mistake.

The exact plasma equilibria obtained in [2] form con-
tinuous families parametrized by an integer N and 2N
arbitrary real parameters b . 0, aN , ak , bk , k � 1, . . . ,
N 2 1. Varying these parameters, one gets bifurcations
of topological structures of magnetic surfaces which form
systems of nested tori and nested cylindrical surfaces; see
Fig. 1 of [2]. In [9], we present the exact helically sym-
metric plasma equilibria with analogous properties. All
these solutions are smooth and well-behaved and have no
tangential discontinuities and no current sheets. They form
families of plasma equilibria which do not obey the mag-
netostatic theorem developed in [10].
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