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Universal Aspects of the Chemomechanical Coupling for Molecular Motors
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The directed movement of molecular motors is studied theoretically within a general class of nonuni-
form ratchet models in which the motor can attain M internal states and undergo transitions between
these states at K spatial locations. The functional relationship between the motor velocity and the con-
centration of the fuel molecule is analyzed for arbitrary values of M and K . This relationship is found
to exhibit universal features which depend on the number of unbalanced transitions per motor cycle
arising from the enzymatic motor activity. This agrees with experimental results on dimeric kinesin and
is predicted to apply to other cytoskeletal motors.
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A lot of experimental and theoretical effort has been
recently devoted to the processive movement of molecu-
lar motors along filaments. Experimentally, it is now
possible to observe the movement of single motors and
to determine their motor properties as a function of
different control parameters. Such studies have been
performed, e.g., for cytoskeletal motors such as dimeric
kinesin [1–9], monomeric kinesin [10], myosin V [11],
and dynein [12–14] which move along microtubuli or
actin filaments.

For dimeric kinesin, the motor velocity has been mea-
sured as a function of two control parameters, the con-
centration G of the fuel molecule ATP and the applied
force F. The motor velocity y was observed to increase
monotonically with G and to saturate for large G. In ad-
dition, the data for zero or small F could be well fitted by
y�G� � ymaxG��G� 1 G� [1,3,5]. More recently, it was
found that such a fit is even possible over the whole force
range, 0 # jFj # 5.6 pN, provided one uses F-dependent
parameters ymax and G� which leads to [9]

y�G, F� � ymax�F�
G

G��F� 1 G
. (1)

The latter relation, which represents a specific functional
dependence of the velocity on the two parameters G and
F, describes the data for one particular cytoskeletal motor.
Should such a relation hold for other motors as well? In
order to address this question, I study a rather large class
of ratchet models in which the motor can attain M internal
states and undergo transitions between these states at K
spatial locations. The dependence of the velocity on the
two control parameters G and F is obtained for arbitrary
values of M and K , and is found to be determined by
the number Q of unbalanced transitions arising from the
enzymatic motor activity.

Most cytoskeletal motors have one or two enzymatic
domains which correspond to Q � 1, 2, or 4 as discussed
below [15]. The relation as given by (1) is found to apply
to all models with Q � 1. For Q $ 2, somewhat more
general relationships are obtained in which the velocity
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y�G, F� is given by the ratio of two G-polynomials with
F-dependent coefficients. The degree of both polynomials
is at most Q and is further reduced in the presence of
additional constraints or symmetries.

Theoretically, the main challenge arising from the
chemomechanical coupling of molecular motors consists
in the simultaneous modeling of chemical kinetics and
mechanical movement [16–26]. Here, I will use the
framework of composite Markov processes [27]. One
important aspect of real motors to be incorporated into
this framework is the interdependence of the biochemical
cycle and the conformational state as emphasized by the
French group [20,24,26].

The �M, K� models studied below represent general-
izations of those studied in [20,24,26], which were re-
stricted to �M, K� � �2, 2�. In addition, the �M, K� models
considered here have localized transition rates which are
parametrized in terms of delta functions while the (2, 2)
models in [20,24,26] had transition rates localized in finite
spatial intervals. The latter distinction appears to be rather
technical but it is, in fact, crucial since the delta-function
parametrization makes it possible to analyze these models
for arbritrary values of M and K .

Within the �M, K� models, the directed movement of
the motor is described by one spatial coordinate x. For
linear motors, this coordinate describes the displacement
of the center of mass of the motor parallel to the fila-
ment. For a given value of x, the motor molecule must
be bound to the filament but can still be in a variety of in-
ternal states or levels. If the motor has only one enzymatic
domain or head, this head can attain a discrete number of
states corresponding to (i) no substrate, (ii) adsorbed ATP,
(iii) adsorbed ADP�P, and (iv) adsorbed ADP. In each of
these states, the motor may adopt a different conformation
which will experience different interactions with the fila-
ment. If the motor has two heads, a and b, one has three
groups of levels corresponding to (I) two bound heads,
(II) bound head a, and (III) bound head b. In this case,
the motor molecule can build up internal stresses aris-
ing, e.g., from the rebinding of the unbound head to the
filament [28]. A similar approach should apply to rotary
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motors where x would represent an appropriate angular co-
ordinate [29].

The stochastic dynamics of the motor is described by
the probability densities Pm�x, t� to find the motor at time
t and position x in level m with 1 # m # M. For a
given position x, each probability density Pm may change
(i) because of lateral diffusion in level m described
by lateral currents Jm or (ii) because of transitions
between the different levels. Therefore, the probability
densities Pm satisfy the continuity equations ≠Pm�x, t��
≠t 1 ≠Jm�x, t��≠x � Im�x, t� with the transition current
densities Im.

The lateral currents Jm depend on the molecular interac-
tion potentials Um�x� and on the applied force F [30] and
have the usual form [27,31]

Jm � 2Do�≠Vm�x��≠x 1 ≠�≠x�Pm , (2)

with Vm�x� � �Um�x� 2 Fx��T where T is the tempera-
ture in energy units and the parameter Do represents the
small-scale diffusion coefficient. The interaction potentials
Um contain contributions from internal stresses within the
motor molecule. The transition current densities Im are
given by

Im �
X
n

0
�2PmVmn�x� 1 PnVnm�x�� , (3)

where the prime indicates n fi m, and the transition rates
Vmn�x� from state m to state n are parametrized by

Vmn�x� �
X
k

vmn�xk��Vd�x 2 xk� , (4)

which depend on the transition rate constants vmn�xk� at
the K positions x � xk with 0 # x1 , x2 , · · · , xk ,

�. The parameters � and �V represent the period of the
underlying molecular potentials and a molecular “local-
ization” length, respectively, and d�x� is Dirac’s delta
function. Thus, the nonuniform ratchet models studied
here may be characterized by a disrete network of vertices
�xk , m� corresponding to the transition locations xk and to
the internal states or levels m as shown in Fig. 1.

If there is no enzymatic activity, the system obeys
detailed balance and one has Vmn�x� � exp�2Vn�x� 1

Vm�x��Vnm�x� which implies vmn�xk� � exp�2Vn�xk� 1

Vm�xk��vnm�xk� in (4). For convenience, the transition
rate constants vmn�xk� will now be denoted by vr with
1 # r # N , where N # KM�M 2 1� is the total number
of such rates, and will be divided up according to

vr � vdb
r 1 Dr (5)

with the balanced parts vdb
r and the unbalanced parts Dr

arising from the enzymatic activity.
To proceed, let us consider stationary states with

≠Pm�≠t � 0 and total lateral current Jtot �
P

m Jm �
const, and employ periodic boundary conditions for
the interval 0 # x , �. The total position probability
Ptot �

P
m Pm is normalized in such a way that this
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FIG. 1. Network of transitions at locations x � xk with 1 #
k # K between different internal states or levels m with 1 #
m # M. Pairs of vertices �xi , m� and �xj , n� are connected by
local lateral currents for n � m and i fi j (corresponding to
the full lines), and by local transition currents for i � j and
n fi m (corresponding to the broken lines). These currents obey
a vertex rule which corresponds to Kirchhoff’s first law for
electric circuits. The arrows represent the periodic boundary
conditions in the lateral direction.

interval contains one motor particle. This implies that the
motor velocity y is given by y � �Jtot.

A detailed investigation of the �M, K� models just de-
scribed shows that the dependence of the motor velocity
y on the rate constants vr exhibits generic features which
can be summarized by the following simple rules [32]:

Rule 0: The dependence of the motor velocity y on the
transition rate constants vr has the form

y �
Pol1�v1, v2, . . . , vN �
Pol2�v1, v2, . . . , vN �

, (6)

with two polynomials Pol1 and Pol2.
Rule 1: Both polynomials are multilinear in all vr , i.e.,

each term of both Pol1 and Pol2 can be characterized by
integers z � �z1, . . . , zN � via

term�z� � v
z1
1 v

z2
2 · · · v

zN
N with zr � 0, 1 . (7)

Rule 2: Each term contains at least M 2 1 factors vr .
Rule 3: No term contains a product of the form

vmn�xk�vmo�xk�.
Rule 4: No term contains a product of the form

vmn�xk�vnm�xk�.
Rule 5: Pol1 contains products of vr which correspond

to closed and directed loops within the network of transi-
tions. The smallest such loop involves a pair of transitions
which connect two levels in opposite directions at different
locations.

Rule 6: If all transition rates satisfy detailed balance
with rate constants vr � vdb

r , one has

y � Pol1�vdb
1 , vdb

2 , . . .� � 0 for F � 0 . (8)

Since the balanced transitions do not contribute to the
motor velocity, let us now focus on the unbalanced transi-
tions characterized by Dq . 0 in (5). The total number of
such transitions per motor cycle will be denoted by Q.

The simplest situation is provided by motors, such as
monomeric kinesin, which have a single enzymatic do-
main. Such motors should have only one location xk with
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only one unbalanced transition rate which implies Q � 1.
This situation is illustrated in Fig. 2(a) where the unbal-
anced transition with transition rate constant D1 is indi-
cated by a thick arrow. In this case, rule 1 leads to

y�D1� �
a0 1 a1D1

b0 1 b1D1
(9)

for Q � 1 where the coefficients a and b depend on F
with a0�F � 0� � 0 as follows from rule 6.

Next, consider molecular motors such as dimeric
kinesin, dynein, or myosin V which have two identical
enzymatic domains or heads. The corresponding ratchet
models are characterized by two (usually different) lo-
cations with enzymatic activity. If each head can make
(i) only forward steps or (ii) both forward and backward
steps, it can be activated (i) at only one of these locations
or (ii) at both locations, which corresponds to Q � 2 and
Q � 4, respectively; see Figs. 2(b) and 2(c) [33].

For Q � 2, the dependence of the velocity on the un-
balanced rate constants D1 and D2 has the general form

y�D1, D2� �
a0 1 a1D1 1 a2D2 1 a12D1D2

b0 1 b1D1 1 b2D2 1 b12D1D2
, (10)

with a0 � 0 for F � 0. Likewise, for Q $ 3, rule 1
implies that the motor velocity y�D1, . . . , DQ� is given by
the ratio of two multilinear polynomials of degree Q, and
rule 6 leads to a0 � 0 for F � 0.

The generic features just described are valid for an arbi-
trary number of balanced transitions. Thus, we could add
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FIG. 2. Transition networks with M � 3 internal states or lev-
els and with (a) Q � 1, (b) Q � 2, and (c) Q � 4 unbalanced
transitions, respectively. In all three examples, the balanced and
unbalanced transitions are indicated by thin and thick arrows,
respectively. The unbalanced rate constants are denoted by Dq
with 1 # q # Q.
more and more balanced transitions in order to attain bal-
anced rates Vdb

mn�x� which vary continuously with x. This
implies that the generic velocity-rate relationships should
also be valid for transition rates

Vmn�x� � Vdb
mn�x� 1

X
q

Dq�Vd�x 2 xq� , (11)

where the functions Vdb
mn�x� satisfy detailed balance but

have an otherwise arbitrary x dependence and the summa-
tion over q depends on the level pair �m, n�.

The velocity-rate relationships discussed so far repre-
sent the most general forms consistent with a given value
of Q. If the motor cycle exhibits some additional con-
straints or symmetries, some of the F-dependent polyno-
mial coefficients will be identically zero. One example is
provided by Q � 2 with two unbalanced transitions which
emanate from the same vertex �xk , m�. In this case, one has
a12 � b12 � 0 in (10) as follows from rule 3. Another
example is provided by the strongly unbalanced limit in
which one ignores all balanced transitions depicted as thin
arrows in Figs. 2(a) and 2(b). In this limit, both relation-
ships (9) and (10) simplify since rule 2 implies that the
zeroth order coefficients a0 and b0 vanish for all F while
the first order coefficients a1 and a2 now vanish for F � 0
as follows from rule 6.

In order to relate the theoretical results just described to
experiments, one must include the dependence of the un-
balanced rate constants Dq on the concentration G of the
fuel molecules. The simplest scheme for an enzymatic re-
action between the fuel molecules and the motor domain(s)
is provided by Michaelis-Menten kinetics [34] which im-
plies that D21

q � �cqG�21 1 d21
q with 1 # q # Q where

the reaction rates cq and dq may depend on the applied
force F.

If these expressions for Dq are inserted into (9), one
obtains the motor velocity

y�G, F� �
g0�F� 1 g1�F�G
h0�F� 1 h1�F�G

(12)

for Q � 1 with g0�F � 0� � 0. Likewise, for Q $ 2, the
most general functional relationship is given by

y�G, F� �

"
QX

n�0

gn�F�Gn

# , "
QX

n�0

hn�F�Gn

#
, (13)

with g0�F � 0� � 0.
Models with Q $ 2 can again lead to the simplest

possible relationship (12) if some of the polynomial coef-
ficients gn and hn vanish (for all F) because of additional
constraints or symmetries. This happens, e.g., for models
with �M, K� � �2, 2� and �M, K� � �3, 2� in the strongly
unbalanced limit with Q � 4 which we have recently stud-
ied for dimeric kinesin [35]. The (2, 2) models are char-
acterized by the four transition rate constants v12�x1� �
D1, v21�x1� � D2, v12�x2� � D3, and v21�x2� � D4.
The symmetry between the two heads of dimeric kinesin
implies D4 � D1 for forward steps and D3 � D2 for
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backward steps. If the corresponding Michaelis-Menten
reaction rates cq and dq lead to a G-independent ratio
D2�D1, one arrives again at the simplest form as given by
(12) [35]. On the other hand, if the reaction rates do not
have this property, the (2, 2) models with Q � 4 lead to
G polynomials of degree 3, i.e., to a simplified version of
(13) with g4 � h4 � 0.

In summary, it has been shown here that the dependence
of the motor velocity on the concentration G of the fuel
molecules and on the applied force F is given by simple re-
lationships which are primarily determined by the number
Q of unbalanced transitions per motor cycle which break
detailed balance. These relationships are universal in the
sense that they are valid (i) for any choice of the molecu-
lar interaction potentials, (ii) for arbitrary applied force
F, (iii) for any number of balanced transition rates, and
(iv) for any force dependence of the Michaelis-Menten
reaction rates. This universality has two important con-
sequences. On the one hand, the functional relationships
discussed here should apply to many types of real mo-
tors. On the other hand, it will in general be difficult to
determine a unique set of model parameters for a specific
molecular motor.

I thank Nicole Jaster for a critical reading of
the manuscript.
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