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Fluctuation-Facilitated Charge Migration along DNA
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We propose a model Hamiltonian for charge transfer along the DNA double helix with temperature-
driven fluctuations in the base pair positions acting as the rate limiting factor for charge transfer between
neighboring base pairs. We compare the predictions of the model with the recent work of Barton and
Zewail on the unusual two-stage charge transfer of DNA.

PACS numbers: 87.15.–v, 73.50.–h, 82.30.Fi
Charge transport and electrical conduction is known
to occur in a wide range of organic linear-chain crystals
of stacked planar molecules [1]. Transfer rates from mole-
cule to molecule are determined by the single-particle
transfer integral t, with typical rates of the order of
1�10215 sec. Strong interaction between the electronic
degrees of freedom and molecular vibrations may reduce
this to 1�10212 sec, a typical lattice or intramolecular vi-
bration frequency. By comparison, biochemical charge-
transfer processes, such as those encountered in the
metabolic redox (“oxidation-reduction”) chains [2], usu-
ally are much slower (down to 1 sec21). Key steps often
involve some form of large-scale motion of the molecule.

DNA can be considered as a one-dimensional, aperi-
odic, linear chain of stacked base pairs. More than 30
years ago, it was suggested that duplex DNA might sup-
port electron transport in a manner similar to that of the
linear-chain compounds, namely, by tunneling along over-
lapping p orbitals located on the base pairs [3,4]. Hall
et al. [5] first presented evidence that photoinduced, radi-
cal cations can travel along DNA molecules in aqueous so-
lution over quite considerable distances (more than 40 Å,
or about ten base pairs). If so, DNA might present us with
flexible, molecular-size wires able to transport charge in
aqueous environments. Possible applications range from
microelectronics to long-range detection of DNA damage.
Subsequent studies by a number of groups reported a wide
range of values for the effective inverse spatial carrier de-
cay length b, ranging from as low [6] as 0.02 Å21 to as
high [7] as around 1 Å21, the different values most proba-
bly reflecting differences in charge transfer for different
base sequences [8].

Recently, Wan and co-workers (hereafter referred to as
BZ) [9] used femtosecond spectroscopy to measure the
rates of the DNA charge-transfer process. An unusual two-
step decay process was observed with characteristic time
scales of 5 and 75 ps, respectively. Ab initio molecular-
orbital calculations [10–12] find that DNA has a large
single-particle band gap, and a transfer integral t of order
0.1 eV [13]. This would lead to a charge-transfer rate
t�h for coherent tunneling that is comparable to that of
the linear-chain compounds, but that is much too high
compared to the rates measured by BZ.
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Apart from coherent tunneling [3], a number of al-
ternative transport mechanisms have been proposed, in
particular, incoherent, phonon-assisted electron hopping
between bases, with the electron wave function fully lo-
calized on each subsequent base pair [14,15]. This would
reduce the transfer rate to a typical intramolecular vibra-
tional frequency (ps21), but this still is much too large to
explain the slow second-stage step of the decay. It was
also suggested that a charged radical could induce a po-
laronic distortion [16] of the DNA internal structure that
might control charge transfer. The explanation proposed
by BZ for the long relaxation times is that large-amplitude
thermal fluctuations of the intercalated photoreceptor sets
the rate-limiting step for the charge transfer. The polaronic
scenario for charge transport has also been discussed by Ly
et al. [17] and by Conwell and Rakhmanova [18].

The aim of this Letter is to construct a model Hamilto-
nian to treat charge transfer along a chain under conditions
of large structural fluctuations, and suggest that thermally
induced structural disorder interferes with the p-orbital
overlap mediated charge transfer, leading to long relax-
ation times. To construct this Hamiltonian, we first must
discuss the origin of the structural fluctuations. Figure 1
shows an example of a typical DNA configuration obtained
by a molecular dynamics (MD) simulation [19]. The rela-
tive orientation of neighboring bases along DNA is charac-
terized by a set of collective variables such as the relative
roll and twist angles (R and T ) and the relative slide dis-
placement (see lower portion of Fig. 1). Long-time MD
simulations of DNA lead to typical rms fluctuation angles
for R and T of order 5 and 9 deg [20] in the ps to ns
time window, while the mean base pair spacing also shows
large-amplitude fluctuations [21]. Structural fluctuations
in the ps to ns time window have been observed [22] ex-
perimentally as dynamic Stokes shifts in the fluorescence
spectrum of DNA. These local fluctuations are extraordi-
narily strong compared with those due to thermally excited
phonon modes in crystalline linear-chain materials. The
unusual “softness” of the R, S, and T variables is also
reflected by the fact that their mean values vary greatly
depending on base pair sequence [23].

In our simplified model, we include only two collective
modes. The first mode is an angular variable u�t�, which is
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FIG. 1. Upper left: Snapshot of the result of a 140 ps fi-
nite temperature simulation of DNA by Swaminathan et al. [19].
Upper right: the ordered t � 0 DNA structure. Lower portion:
Illustrations of the roll �R�, slide �S�, and twist �T� motions of
adjacent base pairs.

that relative rotation angle of the two bases which couples
most efficiently to the p-orbital tunnel matrix element.
Next, the displacement variable y�t� represents that col-
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lective mode which couples most efficiently to the on-site
energy of the radical. This second form of coupling pro-
vides the necessary mechanism for energy transfer between
the charge and the thermal reservoir required for hopping
transport along a random sequence of base pairs with dif-
ferent on-site energies. Both u�t� and y�t� are treated as
classical harmonic variables that are coupled to a heat bath
of oscillators. As a result, u�t� and y�t� obey — in the ab-
sence of the radical — the following Langevin equations:

M
d2y�t�

dt2 1 gy
dy�t�

dt
1 MV2

yy�t� � hy�t� , (1)

I
d2u�t�

dt2 1 gu

du�t�
dt

1 IV2
uu�t� � hu�t� . (2)

In Eqs. (1) and (2), I is the reduced moment of inertia
for the relative rotation of the two adjacent bases, Vu is
the oscillator frequency of the rotation mode, while M
and Vy are the reduced mass and natural frequency of
the displacement mode. The values of M, I, Vu , Vy ,
and the damping coefficients are obtained by comparing
the Fourier power spectra of y�t� and u�t� obtained from
Eqs. (1) and (2), to power spectra of MD simulations of
DNA [24]. From a typical long-time (10 ns) MD time se-
ries, we find oscillation periods 2p�V of order 1–10 ps, a
(large) mass M of order 1–10 kdalton, a moment of inertia
I of order 102kBTV

22
u , and relaxation times comparable

to the oscillation period (i.e., the slow modes are close to
critical damping). The amplitudes of the white-noise vari-
ables h�t� follow from the fluctuation-dissipation theorem
for classical variables. We will neglect mode coupling
between different pairs of adjacent base pairs. The two
modes are then coupled to a one-dimensional, tight-
binding Hamiltonian for single-particle charge transport:
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In Eq. (3), ei is the on-site electronic energy. The distance
y0,i is the change in the equilibrium value of the y variable
of the ith base when the particle localizes on that site,
while MV2y2

0 is the typical deformation energy.
Certain limiting cases of this general Hamiltonian are

familiar from studies of one-dimensional charge transport.
For uniform ei and for fixed u, H is the Hamiltonian of
a tight-binding polaron [16]. For fixed u and y and ran-
dom ei , H is the Anderson Hamiltonian for localization
in one dimension. For the case of DNA, we assume that
site-to-site differences in the value of ei are of order 0.1 eV
based on the sequence-dependent differences in the ion-
ization potential [25]. Next, the transfer integral, t�u� will
be assumed to be small compared to the thermal energy,
kBT , for u near a special value, denoted by u�, the “rapid
decay state” (see below). Finally, the characteristic inter-
action energy, MV2y2

0 , between the charged radical and
the on-site structural variable, y, is assumed to be large
compared to kBT (e.g., due to electrostatic effects) and of
order e.

In this, unusual, high-temperature/strong-coupling
regime, the transfer integral t�u� is the lowest energy
scale. Under these conditions, particle motion described
by H is, indeed, dominated by incoherent hopping from
site to site. We first restrict ourselves to the case of a
particle which resides at site A at time t � 0 and then
hops to the neighboring site B with a different on-site
energy. For fixed u, the transition rate G�u� for incoherent
charge transfer between A and B can be computed by
applying the method of Garg, Onuchic, and Ambegaokar
(GOA) [26]. In Fig. 2 we show the two potential energy
surfaces V1� y� � �AjHjA� and V2� y� � �BjHjB� for
the particle on the A and B, respectively, sites as a function
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FIG. 2. Potential energy surfaces for a particle localized on
either of two neighboring sites, A and B, as a function of the
collective variable, y. The u variable is assumed fixed. Non-
adiabatic transfer between the two surfaces takes place nearly
exclusively at the degeneracy point y�.

of y. If the difference between the on-site energies of
the two sites is modest, then the two energy surfaces will
cross each other, as shown in Fig. 2. Efficient transfer
between the two potential energy surfaces takes place
nearly exclusively at the “crossing points” y�, where
V1� y�� � V2� y��, shown in Fig. 2. Note that an energy
barrier Ef must be overcome to reach this crossing point.
In the high-temperature, strong-coupling limit, the on-site
probability decays exponentially with a rate

G�u� �
t�u�2

4h̄

µ
p

ErkBT

∂1�2

exp�2Ef�kBT � , (4)

where the energy scale Er defined in Fig. 2, depends on
the difference between the on-site energies. The validity
condition for Eq. (4) is that t�u� must be small compared
with �ErkBT �1�2. By itself, Eq. (4) does not account for
two-stage decay, as observed by BZ. In a typical ensemble
of radical sites (with the same on-site energies) there must
be significant heterogeneity, with less likely states charac-
terized by rapid charge transfer and more likely states char-
acterized by low charge transfer rates. This heterogeneity
is incorporated by demanding that t�u� only is appre-
ciable for u near the special value u�, while tunneling
plays no role for different u values [27]. If u undergoes
large-amplitude thermal fluctuations, then there should be
considerable heterogeneity for the transfer rates.

Assume then that, at time t � 0, an ensemble of par-
ticles is prepared on the A site, with the u�0� variable obey-
ing the Boltzmann distribution. We define the probability
density P�u, t� du to be the fraction of radicals at time t
that are still on the A site, and whose u value is in the
range between u and u 1 du. For the overdamped case
of Eq. (2), P�u, t� obeys the following equation:
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We now use Eq. (5) to discuss the decay rate. For G�u��
large compared to the thermal equilibration rate 1�tu two
forms of decay are encountered [28].

(i) Early stage decay.—At time t � 0, a certain
fraction of the oscillators has an energy exceeding E �
�1�2�I�Vuu��2. These oscillators will pass through the
u � u� point within a time of order max�tu , V21

u �. When
this happens, there is a finite probability for charge trans-
fer to take place. On a time scale of order max�tu , V

21
u �,

these “high energy” oscillators are removed from the
probability distribution.

(ii) Late stage decay.—After the high energy oscillators
have been removed from the distribution, further decay re-
quires “energy diffusion” along the oscillator energy scale
from lower energies towards E�u�� � �1�2�I�Vuu��2.
Once the energy of an oscillator reaches this value,
efficient charge transfer takes place. After a standard, but
lengthy, analysis of Eq. (4), we find that the late-stage
decay rate is

klate � tuV2
u
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u�e2�1�2�bIV
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2` e2�1�2�bIV
2
uu2 du

æ
. (6)

The factor in front of Eq. (6) is of order the early-stage
decay rate while the term in brackets is of the order of the
thermal probability that u exceeds u�. The second-stage
decay rate strongly increases with increasing temperature,
while early-stage decay is not expected to be strongly tem-
perature dependent although the fraction of sites that ex-
hibits early stage decay should be strongly temperature
dependent [of order the term in brackets of Eq. (6)].

The time dependence of P�u, t� would be consistent
with the observations of BZ if this thermal probability
of the u� state is of order 0.01. In that case, 1% of the
sites would show rapid decay with time scales of order ps,
while the remainder would show decay slowed down by a
factor of 100. We treated here only the nearest-neighbor
hopping process. Charge transport over longer distances
described by our Hamiltonian reduces — under the as-
sumed conditions — to classical one-dimensional diffusion
in a random medium with site-specific transfer rates. The
transport properties of such systems have been extensively
discussed elsewhere [29].

In conclusion, we propose that charge transport along
DNA proceeds by classical diffusion with high-amplitude
thermal fluctuations providing the rate-limiting step for
the site-to-site charge transfer. If correct, charge trans-
port along DNA would have unique characteristics as com-
pared to the linear-chain compounds. Since the radical
severely deforms the local structure, it might be consid-
ered as a polaron in the strong-coupling limit; but, unlike
4395
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polaronic transport, hopping is controlled by thermal fluc-
tuations. Indeed, Eq. (6) predicts that the charge-transfer
rate should strongly increase with temperature, which is
consistent with the observations of BZ. A better descrip-
tion of the mechanism proposed in this paper for charge
transfer along DNA would be to consider it as a repeated
sequence of reversible oxidation-reduction reactions. The
site-to-site charge transfer would be viewed as a “chemical
reaction,” dominated by a “transition state” where the col-
lective variables y and q assume a special value ( y� and u�,
respectively). We are not aware of any of the linear-chain
compounds exhibiting this curious form of charge transfer.
On the other hand, a recent single-molecule optical study
of a particular reversible oxidation-reduction reaction did
report [30] two-stage nonexponential behavior but with de-
cay rates much lower than those measured by BZ (in the
range of 1 sec21). The higher rates of charge transfer in
DNA would be due to the fact that the molecular motion of
the bases still is significantly restrained by the backbone.
If the present analysis is appropriate, then charge transport
in DNA occupies a unique position intermediate between
charge transport in solid-state materials and charge trans-
port in biochemical charge-transfer reactions.

Finally, the proposed Hamiltonian obviously incor-
porates a number of rather serious simplifications. The
method described in this paper should apply only to charge
transfer between bases with comparable on-site energies,
so that the energy difference can be compensated by pola-
ronic deformation energy. This is expected to be the case
if the adjacent bases are the same. The two-site energy
difference at the border between a GC (guanine-cytosine)
string and an AT (adenine-thymine) string may well be
so large, however, that the degeneracy point is removed.
This would have the effect of dramatically suppressing
charge transfer. Detailed quantum-chemical calculations
are required to determine whether this is, in fact, the case.
We included the collective modes only in a schematic
way. We require a large structural on-site distortion of a
site by the particle (of order 0.1 eV), but this is likely to
require an anharmonic description of the collective modes.
We did not include coupling of modes of adjacent pairs,
the double-stranded nature of DNA with the possibility
of interchain charge transfer or effects related to the
“tertiary” structure, i.e., the coiling of the duplex.
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