
VOLUME 85, NUMBER 2 P H Y S I C A L R E V I E W L E T T E R S 10 JULY 2000
Catalysis of Entanglement Manipulation for Mixed States
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We consider entanglement-assisted remote quantum state manipulation of bipartite mixed states. Sev-
eral aspects are addressed: we present a class of mixed states of rank two that can be transformed into
another class of mixed states under entanglement-assisted local operations with classical communication,
but for which such a transformation is impossible without assistance. Furthermore, we demonstrate en-
hancement of the efficiency of purification protocols with the help of entanglement-assisted operations.
Finally, transformations from one mixed state to mixed target states which are sufficiently close to the
source state are contrasted with similar transformations in the pure-state case.

PACS numbers: 03.67.–a, 03.65.Bz
Entanglement between spatially separated quantum sys-
tems has important implications on fundamental issues of
quantum mechanics and forms the basis for most of the
practical applications of quantum information theory [1,2].
In many of these applications two or more parties have di-
rect access to only parts of a composite quantum system,
but may communicate by classical means and may thereby
coordinate their actions. In light of recent progress in quan-
tum information theory, entanglement is often viewed as
the essential resource for processing and transmitting quan-
tum information.

As has been demonstrated in Ref. [3], entanglement is
indeed an intriguing type of resource: the mere presence
of entanglement can be an advantage when the task is to
transform an initial state into a certain final state with the
use of local quantum operations and classical communica-
tion (LOCC). There are indeed target states which can-
not be reached by LOCC starting from a particular initial
state, but which can be reached with the assistance of a dis-
tributed pair of auxiliary quantum systems in a particular
known state, even though these auxiliary quantum systems
are left in exactly the same state. Such transformations are
called entanglement-assisted LOCC (ELOCC) operations.

This phenomenon is quite remarkable as the entangle-
ment which serves as a “catalyst” for the otherwise forbid-
den “reaction” is not consumed. The basis of the example
given in Ref. [3] is a criterion presented in Ref. [4]: A
joint pure state corresponding to jc� can be transformed
into another jf� with the use of LOCC if, and only if, the
set of ordered Schmidt coefficients characterizing the ini-
tial state is majorized [5] by the set of ordered Schmidt
coefficients of the final state. Curiously, it is the strange
class of ELOCC operations that adds a new flavor to the
initial question raised in Ref. [4]; “What tasks may be ac-
complished using a given physical resource?” The class
of ELOCC operations is in fact more powerful than LOCC
even without a concomitant consumption of the physical
resource entanglement [3,6].

In practical applications, one would expect to always
deal with entangled mixed states rather than with pure
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states. Unfortunately, such a convenient tool as the
majorization criterion is missing in the mixed-state case,
and the question whether a particular entanglement trans-
formation from one mixed state into another mixed state is
possible seems to be much more involved [7]. In mixed
quantum mechanical states both classical correlations
and intrinsic quantum correlations may be present, which
makes the structure of mixed-state entanglement a more
complex matter. A different aspect of the same problem is
the well-known fact that a representation of a mixed state
in terms of pure states is not uniquely defined, and it is
essentially this ambiguity that prohibits a straightforward
application of the majorization criterion.

In this Letter we demonstrate that even for mixed
states the set of tasks that can be accomplished with
entanglement-assisted local operations is strictly larger
than the set of tasks which may be performed with mere
LOCC. This fact is not obvious a priori, bearing in
mind that, e.g., pure states and mixed states behave very
differently as far as purification is concerned [8]. The
problem of catalysis of entanglement manipulation for
mixed states will be approached as follows: (i) We give a
class of mixed states of rank two that can be transformed
into representatives of another class of mixed states with
ELOCC but not with LOCC; (ii) we show that there are
cases for which the proportion of a certain pure state in
a mixture can be increased more efficiently with ELOCC
operations than with sole LOCC; (iii) purification schemes
are investigated for a practically important class of mixed
states; (iv) “small transformations” in the interior of
the state space are compared with similar entanglement
manipulations in the pure-state case.

Definitions.—Let s and r be states taken from the state
space S �H � over H , where H � HA ≠ HB is the
Hilbert space associated with a bipartite quantum system
consisting of parts A and B. We write, in the following,
s ! r under LOCC if s can be transformed into r by
applying local transformations and classical communica-
tion [4]. A pair of states r, s is called incommensurate if
both s !� r and r !� s under LOCC. For pure states s
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and r the (necessary and sufficient) majorization criterion
for s ! r under LOCC reads as [4]

kX
i�1

ai #

kX
i�1

bi for all k � 1, . . . , N 2 1 , (1)

N � dim�HA� � dim�HB�, where a1, . . . , aN and
b1, . . . , bN with 1 $ a1 $ . . . $ aN $ 0 and 1 $

b1 $ . . . $ bN $ 0 are the eigenvalues of trA�s� and
trA�r�, respectively. Such a list is also referred to as an
ordered list. The content of the conditions stated in Eq. (1)
is abbreviated in the following as trA�s� ¡ trA�r�, with
the majorization relation ¡ [5]. As for LOCC operations
we use the notation s ! r under ELOCC, if

s ≠ v ! r ≠ v (2)

under LOCC for an appropriately chosen catalyst state v

[3]. This state v is an entangled state of another bipartite
quantum system. Note that in the course of the transfor-
mation this state remains fully unchanged.

Mixed-state catalysis of entanglement manipulation.—
The first result concerns the existence of incommensurate
genuinely mixed states such that, with the use of some
appropriately chosen catalyst state, the initial state can
be converted into the final state while fully retaining the
catalyst state. That is, there exist mixed states s, r [
S �H � such that s ! r under ELOCC but not s ! r

under LOCC. “Genuinely” mixed means here that the
projections appearing in the spectral decomposition of the
initial state cannot be locally distinguished. If this were
possible the initial state would essentially be pure.

To see that mixed-state catalysis is possible we construct
a class of states which exhibits this phenomenon. For this
class of states the statement that s ! r under ELOCC fol-
lows immediately from the theorem presented in Ref. [4].
To prove that such a transformation is impossible under
LOCC, the following Lemma is useful.

Lemma 1.—Let s and r be mixed states of rank two
of the form

s � ljc� �cj 1 �1 2 l� jh� �hj , (3a)

r � mjf� �fj 1 �1 2 m� jh� �hj , (3b)

where m � l tr�x�,

x � Pjc� �cjP , (4)

and P � 1 2 jh� �hj. jc� �cj and jf� �fj are entangled
pure states, while jh� �hj is a pure product state. Fur-
thermore, j�h jf�j2 � 0. Then s ! r under LOCC
implies that

trA�x�
tr�x�

¡ trA�jf� �fj� . (5)

Proof: Assume that s ! r under LOCC. The set
of LOCC operations is included in the set of separable
operations [9,10], that is, completely positive and trace-
preserving maps that can be written in the form s �P

i�Ai ≠ Bi�s�Ai ≠ Bi�y with Kraus operators Ai , Bi , i �
438
1, 2, . . . , acting in HA and HB, respectively, where the

trace-preserving property manifests as
P

i A
y
i Ai � 1 andP

i B
y
i Bi � 1. For each i, the image of s is contained in

the range of r,

�Ai ≠ Bi�s�Ai ≠ Bi�y [ range�r� . (6)

Since there is only a single product vector included in
the range of r (which then amounts to a best separable
approximation in the sense of [11]), the state jc� �cj must
be mapped on njf� �fj 1 �1 2 n� jh� �hj, where n �
m�l. P�Ai ≠ Bi� jc� � P�Ai ≠ Bi�Pjc� for all i, and,
hence,

n � tr

∑
P

X
i

�Ai ≠ Bi� jc� �cj �Ai ≠ Bi�yP

∏

� tr

∑X
i

P�Ai ≠ Bi�x�Ai ≠ Bi�yP

∏
# tr�x� . (7)

As tr�x� � n, it follows that x�tr�x� ! jf� �fj under
LOCC, which in turn implies, by the theorem in Ref. [4],
that trA�x��tr�x� ¡ trA�jf� �fj�. �

The following one-parameter classes of states of rank
two provide an example of catalysis for mixed states.
Take H � HA ≠ HB with HA,HB � span�j1�, . . . , j5�	
and let

s � ljc� �cj 1 �1 2 l� j55� �55j , (8a)

r � mjf� �fj 1 �1 2 m� j55� �55j , (8b)

with m � 0.95l and

jc� �
p

0.38 j11� 1
p

0.38 j22� 1
p

0.095 j33�
1

p
0.095 j44� 1

p
0.05 j55� , (9a)

jf� �
p

0.5 j11� 1
p

0.25 j22� 1
p

0.25 j33� . (9b)

These states are clearly included in the sets of states con-
sidered in Lemma 1. Moreover, the initial state s is gen-
uinely mixed.

From Lemma 1 it follows that s !� r under LOCC for
all values of l [ �0, 1�, as x�tr�x� � jw� �wj, where

jw� �
p

0.4 j11� 1
p

0.4 j22� 1
p

0.1 j33� 1
p

0.1 j44�
(10)

as in Ref. [3]. Hence,

trA�x�
tr�x�

� trA�jf� �fj� , (11)

and therefore, s !� r under LOCC. However, it can be
shown that s ! r under ELOCC. One may perform a
local projective von Neumann measurement in system A
associated with Kraus operators A1 �

P4
i�1 jii� �iij and

A2 � j55� �55j satisfying A
y
1 A1 1 A

y
2 A2 � 1 (compare

also Ref. [12]). If one gets the outcome corresponding to
A2, no further operations are applied. In the other case the
final state is the pure state jw� �wj given by Eq. (10). As in
Ref. [3] this state can be transformed into jf� �fj with the
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help of the catalyst state v � �
p

0.4 j66� 1
p

0.6 j77�� 3

�
p

0.4 �66j 1
p

0.6 �77j� [13], since

trA�jw� �wj ≠ v� ¡ trA�jf� �fj ≠ v� . (12)

Finally, the classical information about the outcomes is
discarded in order to achieve r. Hence, it turns out that
s ! r under ELOCC but s !� r under LOCC.

Increasing the proportion of a pure state in a mixture.—
The possibility of catalysis of entanglement manipulations
has implications on the efficiency of the attempts to in-
crease the quota of some entangled state jj� �jj in a mixed
state s by applying a trace-preserving operation. Indeed,
such protocols can be more efficient when employing
ELOCC rather than exclusively using LOCC. More
precisely, there are (genuinely) mixed states s and pure
states jj� �jj with the property that the maximal average
attainable value of the fidelity under ELOCC,

FELOCC�s, jj� �jj� � sup
r[S

s
ELOCC

�jjrjj� , (13)

is strictly larger than the maximal attainable fidelity under
LOCC,

FLOCC�s, jj� �jj� � sup
r[S

s
LOCC

�jjrjj� . (14)

Here, Ss
LOCC and S

s
ELOCC are the sets of states that can be

reached by applying LOCC and ELOCC, respectively, on
an initial state s.

This statement can be proven by considering an initial
state s of the form specified in Eq. (8a) with

jc� � ´�
p

0.4 j11� 1
p

0.4 j22� 1
p

0.1 j33� 1
p

0.1 j44��
1

p
1 2 ´2 j55� , (15)

and one may choose jj� � jf� as in Eq. (9b). Clearly,

FLOCC�s, jf� �fj� # �1 2 l�FLOCC�j55� �55j, jf� �fj�
1 lFLOCC�jc� �cj, jf� �fj� , (16)

as the components of the initial state s are not locally
distinguishable, and since the achievable fidelity can
be no better than the sum of both best possible fideli-
ties of each contribution. Under LOCC all separable
states are accessible starting from j55� �55j. The (not
necessarily pure) separable state closest to jf� �fj with
respect to the fidelity is given by j11� �11j, and, there-
fore, FLOCC�j55� �55j, jf� �fj� � 1�2. Finally, from
FELOCC�s, jf� �fj� $ l´2 1 �1 2 l´2��2, it follows that

FELOCC�s, jf� �fj� . FLOCC�s, jf� �fj� (17)

certainly holds for all ´ [ � ˜́ , 1�, with an appropriate ˜́ [
�0, 1�, independent of l [ �0, 1�, and for all ´ , 1 the
initial state is also genuinely mixed.

Purification procedures.—The previous two results un-
ambiguously indicate that the class of ELOCC operations
is more powerful than LOCC operations, not only on the
subset of the boundary of S �H � comprising the pure
states but also in the interior of the set S �H �. Albeit
this fact suggests that the use of supplementary catalyst
states opens up possibilities to enhance purification pro-
cedures, ELOCC does not necessarily imply an improved
efficiency in practically motivated problems. Consider the
class of states studied in Ref. [8],

s � ljc� �cj 1 �1 2 l�z , (18)

with the property that there exists a l0 [ �0, 1� such that
s is a separable state and that every state with a larger
weight of jc� �cj is entangled. Furthermore, it is assumed
that �cjz jc� � 0. This class of states includes the class
of states consisting of a mixture of some pure state and
the complete mixture in the corresponding state space,
which is of salient importance in practical applications. In
Ref. [8] is has been shown that �cjrjc� # �cjsjc� for all
states r that can be reached from s with any probability
p . 0 (that is, s ! r under LOCC does not necessarily
hold), implying that for this class of states the proportion of
jc� �cj cannot even be increased with non-trace-preserving
operations [14]. This is also true for ELOCC operations.

Let s [ S �H � be such a state, and let v [ S �H̃ � �
S �H̃A ≠ H̃B� be an appropriate catalyst state. The above
transformation then amounts to a map

s ≠ v � r ≠ v

�

P
i�Ai ≠ Bi� �s ≠ v� �Ai ≠ Bi�y

tr�
P

i�Ai ≠ Bi� �s ≠ v� �Ai ≠ Bi�y�
, (19)

where Ai and Bi satisfying
P

i A
y
i Ai # 1 and

P
i B

y
i Bi #

1 act only in HA ≠ H̃A and HB ≠ H̃B, respectively.
The quantity of interest is now the fidelity F � �cjrjc�
of r with respect to jc� �cj. It is given by
F�l� � trH̃
X

i

�l�cj ��Ai ≠ Bi� �jc� �cj ≠ v� �Ai ≠ Bi�y� jc�

1 �1 2 l� �cj ��Ai ≠ Bi� �z ≠ v� �Ai ≠ Bi�y� jc�	�N ,
where

N �
X

i

tr����Ai ≠ Bi� ��ljc� �cj 1 �1 2 l�z � ≠ v	

3 �Ai ≠ Bi�y��� .

dF2�l��d2l � C �N 3 with a number C independent of
l, and one can argue, as in the case of local operations
without a catalyst state, the following [8]: The sign of
the second derivative of the function f�l� � F�l� 2 l is
constant for all l [ �0, 1�, and, therefore, this function is
convex, concave, or linear. At l � 0, f�0� $ 0, as f�l� $

2l for l [ �0, 1�, and f�1� # 0. f�l0� # 0 follows
from the fact that the map equation (20) cannot transform
439
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the state pertaining to l0 to an entangled state. Hence,
f�l� # 0 for all l [ �l0, 1�, i.e., the proportion of jc� �cj
can only decrease.

Small transformations and catalysis for pure and mixed
states.—So far, the findings in the pure state case and
those for mixed states have suggested rather similar be-
havior of both sets of states with respect to LOCC and
ELOCC operations. However, things are quite different
in the next issue concerning the possibility to enhance the
range of accessible states with catalyst states in “small”
transformations.

Lemma 2.— For all pure states jc� [ H and all pure
catalyst states jc̃� [ H̃ there exists a d . 0, such that

jc� !� jf� under LOCC ) jc� !� jf� under ELOCC

for all jf� [ H with j�c jf�j2 . 1 2 d.
Proof: Let a1, . . . , aN be the ordered lists of eigen-

values of trA�jc� �cj�, N � dim�HA�, and let g1, . . . , gM

be the corresponding list of the pure catalyst state,
M � dim�H̃A�. Now let ´ . 0 and call an ´ list a
list b1, . . . , bN with 1 $ b1 $ . . . $ bN $ 0 that has
the property jbi 2 aij , ´ for all i � 1, . . . , N . There
exists an ´ . 0 such that, for all ´ lists b1, . . . , bN ,
the statement that aigj . akgl for some i, k [
�1, . . . , N	, j, l [ �1, . . . , M	 implies that bigj . bkgl .
This ´ is, in the following, referred to as ˜́ . Moreover,
there exists a d . 0 such that, for each jf� [ H
with j�c jf�j2 . 1 2 d, the ordered eigenval-
ues of trA�jf� �fj� form a ˜́ list (and, hence, for
such states it is not possible that bigj , bkgl and
aigj . akgl). It follows that for all such jf� [ H
with j�c jf�j2 . 1 2 d the majorization relation
trA�jc� �cj ≠ jc̃� �c̃j� � trA�jf� �fj ≠ jc̃� �c̃j� holds if
trA�jc� �cj� � trA�jf� �fj�. Finally, this implies the
statement of Lemma 2. �

This is not true for mixed states, when the fidelity
of two states s and r is taken to be F�s, r� �
�tr��

p
s r

p
s �1�2�	2 [15]. Indeed, there are states s [

S �H � such that for every d . 0 there are states
r [ S �H � with the property that F�s, r� . 1 2 d and
s !� r under LOCC, but s ! r under ELOCC. Such
states can, e.g., be constructed using the class of states
defined in Eqs. (8a), (9a), and (9b). For any given d . 0
there is a sufficiently small l . 0 such that the fidelity
satisfies F�s, r� . 1 2 d.

Hence, quite surprisingly, in the case of entanglement
manipulations from an initial pure state to a close pure
state, entanglement-assisted operations do not add any
power to LOCC operations. To put it in different words,
there is no catalysis for sufficiently close pure states. Yet,
for mixed states there can be catalysis for such close states.
440
In this paper we have investigated the power of
entanglement-assisted manipulation of entangled quantum
systems in mixed states. Interestingly, the counterintuitive
class of ELOCC operations has proven to be superior to
mere LOCC operations also in the interior of the state
space, for which such strong tools as the majorization
criterion are not available. Yet, although these findings
might contribute to the quest for a better understanding
of mixed-state entanglement, there are numerous open
problems. Stronger criteria for the possibility of certain
entanglement transformation are urgently needed. Finally,
it is our hope that this work will help to explore practical
applications [16] of the strange phenomenon of catalysis.
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