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Spontaneous Deformation of the Fermi Surface due to Strong Correlation
in the Two-Dimensional t-J Model
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The Fermi surface of the two-dimensional t-J model is studied using the variational Monte Carlo
method. We study the Gutzwiller-projected d-wave superconducting state with an additional variational
parameter t0y corresponding to the next-nearest-neighbor hopping term. It is found that the finite t0y , 0
gives the lowest variational energy in the wide range of hole-doping rates. The obtained momentum
distribution function shows that the Fermi surface deforms spontaneously. It is also shown that the Van
Hove singularity is always located very close to the Fermi energy. Using the Gutzwiller approximation,
we show that this deformation is due to the Gutzwiller projection operator or the strong correlation.

PACS numbers: 71.10.Fd, 71.10.Pm, 79.60.–i
The effect of strong correlation is one of the most impor-
tant issues for understanding the high-Tc superconductivity
(SC). Among various anomalous electronic properties, the
experiments of angle resolved photoemission spectroscopy
have revealed that a flat band around (p, 0) and (0, p) is
pinned just below the Fermi energy [1–3]. This phenome-
non is unexpected in the band calculations, and it is consid-
ered to be closely related to the opening of the pseudogap
on the Fermi surface (FS) [4–6], which is also an extraor-
dinary feature in high-Tc cuprates. This anomalous nature
of the FS will be the direct evidence for the non-Fermi liq-
uid behavior. It is thus an interesting issue to study the FS
in the presence of strong correlation.

The effect of the flat band and the geometry of the FS
can be taken into account by using the t-t0-J model or the
t-t0-U Hubbard model in which the next-nearest neighbor
hopping term t0 is introduced as a fitting parameter [7]. If
one chooses t0 , 0, the FS centered at (p , p) observed ex-
perimentally [3,8] can be reproduced in the tight-binding
model. However, high temperature expansion studies on
the momentum distribution function for the t-J model [9]
have shown that the FS is similar to that with t0 , 0 even
though the t0 term is absent in the Hamiltonian. On the
other hand, the conventional mean-field theories, such as
slave-boson theory, simply give the FS with t0 � 0. There-
fore the strong correlation which is not included in the
mean-field theories will be the origin of the change of the
FS geometry.

Here we study this problem from a different point of
view. Since the calculation in Ref. [9] is carried out in the
high temperature region, it is not clear whether or not the
FS deforms down to zero temperature. To study the FS of
the ground state is generally very difficult. The exact di-
agonalization study of small clusters does not give enough
resolution in the k space. The quantum Monte Carlo simu-
lations have often been useless for the two-dimensional t-J
model because of the minus sign problem. Therefore we
0031-9007�00�85(20)�4345(4)$15.00
use the variational Monte Carlo (VMC) method in this pa-
per, which is free from the limitation of the system size
as well as from the sign problem. The VMC method
treats exactly the constraints of no doubly occupied sites
and gives accurate estimates of the expectation values such
as the variational energies and the momentum distribution
functions.

Although it is a variational theory, the VMC method is
powerful to see whether some kind of symmetry break-
ing takes place or not. In this paper we examine the
Gutzwiller-projected d-wave superconducting state which
contains an additional variational parameter t0y correspond-
ing to the next-nearest neighbor hopping term. We can
safely discuss the relative energy difference between the
variational states with and without t0y , although the abso-
lute values of the variational energies can still be low-
ered. We find that the wave function with t0y � 20.1
has the lowest variational energy even though the Ham-
iltonian does not contain the t0 term. This means that the
FS deforms spontaneously. The momentum distribution
function n�k� calculated in the optimized wave function is
consistent with that in the high temperature expansion. Our
method gives an independent and complementary support
of the result that the deformation of the FS is a distinctive
feature of strongly correlated electron systems.

In addition to this, we can identify the physical origin of
the FS deformation in our variational approach. We show
the relation between the energy gain and the Van Hove sin-
gularity. It has been argued that a remarkable enhancement
of SC correlation is achieved if the Van Hove singularity
is close to the Fermi energy [10,11]. Our results show
some similarity to this picture. Furthermore, by comparing
the obtained results with the Gutzwiller approximation, we
can see that the finite t0y is caused solely by the Gutzwiller
projection.

We use the two-dimensional t-J model on a square
lattice,
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Gutzwiller’s projection operator PG is defined as PG �
Pi�1 2 n̂i"n̂i#�, which prohibits the doubly occupied sites.
We set J�t � 0.3.

We use a Gutzwiller-projected mean-field–type wave
function PGPNe jf0� as a trial state with fixing the number
of electrons Ne through PNe . The state is written as
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where yk�uk � Dk��ek 2 m 1
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aij is a Fourier transform of yk�uk .
Usually ek is chosen to be ek � 22�coskx 1 cosky�,

which is in accordance with the Hamiltonian (1). How-
ever, in this paper, we introduce an additional variational
parameter t0y which changes the FS of the variational state.
We assume ek and Dk as

ek � 22�coskx 1 cosky� 2 4t0y coskx cosky ,

Dk � 2Dd�coskx 2 cosky� . (3)

The present wave function contains three variational pa-
rameters t0y , m, and Dd .

At first, using the above wave function we calculate the
variational energy Evar of the Hamiltonian (1)

Evar �
�f0jPNePGHPGPNe jf0�
�f0jPNePGPGPNe jf0�

, (4)

by means of the VMC method. The distribution of the
wave vectors k is determined in the periodic boundary con-
ditions in the x direction and in the antiperiodic ones in the
y direction so as to avoid the gap node of d-wave super-
conductivity. Although the results in the 10 3 10 square
lattice are mainly shown in the following, we also cal-
culate larger sizes up to 20 3 20 to investigate the size
dependence.

Figure 1 shows the Dd dependence of Evar for vari-
ous values of t0y at the doping rate d � 0.12. Apparently
t0y � 20.1 gives the lowest variational energy. Since the
Hamiltonian does not contain next-nearest neighbor hop-
ping terms, the present result means that the shape of the
FS of the ground state is different from that of the nonin-
teracting Hamiltonian. We have also checked that, if the
Hamiltonian has the next-nearest neighbor hopping term
t0, the optimized variational state has t0y , whose amplitude
is larger than t0.

The most significant effect of this result appears in
the shape of momentum distribution functions. Figure 2
shows a contour map of the gradient of the momentum
distribution function j=kn�k�j for t0y � 20.1 calculated
on the 20 3 20 square lattice. Although we have used
the optimized variational parameters Dd and m on the
10 3 10 lattice, it is justified because their size depen-
dences are negligible. Brighter areas in Fig. 2 correspond
to the momentum k with larger values of j=kn�k�j. Al-
though we cannot specify exactly the location of the FS
due to the d-wave SC gap, we expect that the FS lies close
to the area where j=kn�k�j is large.

Our result of momentum distribution function is similar
to that obtained in high temperature expansion by Putikka
et al. [9]. Since we take an opposite approach to high
temperature studies, i.e., in the zero temperature, it is con-
firmed that the FS shown in Fig. 2 is an intrinsic feature
of the t-J model. Note here that the smearing of the FS
around (p , 0) in our calculation is due to the d-wave SC
gap. This suggests that the similar smearing observed in
Ref. [9] may be due to the pseudogap with d-wave symme-
try, in addition to the smearing due to finite temperature.

For the wide range of doping d � 0.04 0.20, we
find that Evar is minimized around t0y � 20.1 and the
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FIG. 1. Dd dependence of Evar�t for t0y � 0 (open squares),
20.05 (filled squares), 20.1 (open circles), and 20.15 (filled
circles). Each point has been minimized with respect to m.
System size is 10 3 10 and the number of Monte Carlo samples
is 2.5 3 105.
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FIG. 2. Full Brillouin zone plot of j=kn�k�j for the doping
rate d � 0.12 and J�t � 0.3. The areas with large values of
j=kn�k�j are highlighted. Note that the FS is deformed even
though the Hamiltonian does not contain the next-nearest neigh-
bor hopping terms. The smearing near (p, 0) and (0, p) is due
to the presence of the d-wave SC order parameters.

chemical potential m � 20.5 6 0.05. Because of the in-
sensitiveness of m as a function of doping, the area of the
momentum space enclosed by the FS is also insensitive to
the doping rate. This result supports the violation of the
Luttinger theorem suggested by Putikka et al. [9]. Actu-
ally n�k� at the doping d � 0.2 in Ref. [9] is very close to
our results in Fig. 2 at d � 0.12.

Figure 3 shows the energy gain due to the finite t0y for the
doping rate 4% 20%. The energy difference between the
value at t0y � 0 and at t0y � 20.1 for several system sizes
are plotted. Although the Monte Carlo data scatter a little,
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FIG. 3. Doping dependence of the energy gain at t0y � 20.1
compared with t0y � 0. The system sizes are 10 3 10 (open
squares), 12 3 12 (filled squares), and 14 3 14 (open circles).
The number of samples is more than 105.
there is apparently a tendency that the energy gain due to
the finite t0y becomes maximum around d � 0.12. As we
increase the system size, the energy gain slightly decreases,
but it will remain finite in the thermodynamic limit. We
find that close to half-filling and for larger doping than
20%, t0y � 0 gives the lowest variational energy, which
means no FS deformation.

Let us discuss here the relation between the energy gain
and the Van Hove singularity. For the optimized value
t0y � 20.1, ek at k � �p , 0� becomes 20.4. On the other
hand, the optimized chemical potential m is around 20.5.
This means that the saddle point or the position of the
flat band near k � �p , 0� is very close to the chemical
potential. Since the d-wave SC gap has a maximum at
�p, 0�, the enhancement of the density of states near the
Fermi energy due to the Van Hove singularity causes the
energy gain. Actually, if we assume Dd � 0, the lowest
energy is achieved at t0y � 0. This indicates that the FS
deforms itself so as to fix the Van Hove singularity to the
chemical potential in the presence of the d-wave SC gap.
This looks consistent with the mechanism of SC due to the
Van Hove singularity [10,11].

If we use a Hamiltonian H̃t2J without projection opera-
tor and the mean-field wave function jf0�, it is apparent
that the variational energy �f0jH̃t2J jf0���f0jf0� is mini-
mized at t0y � 0. Therefore the energy gain due to the
nonzero value of t0y is solely from the Gutzwiller’s projec-
tion operator. In order to clarify the effect of the projection,
we examine the Gutzwiller approximation [12], in which
the effect of constraints are taken into account by statisti-
cal weighting factors. For the t-J model, we have

�f0jPGc
y
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� gt�f0jc

y
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y
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(6)

where gt and gs are the renormalization factors due to
the projection. In the simplest Gutzwiller approximation,
gt and gs are constant, i.e., gt � 2d��1 1 d� and gs �
4��1 1 d�2 [12]. In this case, the Gutzwiller projection
does not alter the mean-field results. However, it was
recently shown that the dependence of the renormalization
factors on the expectation values, such as x � �cy

iscjs�0

and D � �cy
i"c

y
j#�0, plays a crucial role in evaluating the

variational energies [13–16]. If we use this Gutzwiller
approximation, we can show that

dEvar ~
≠�H�
≠x 0

dt0y 1 8Nt0ydt0y , (7)

where x 0 � �cy
iscjs�0 with �ij� being the next-nearest

neighbor sites and
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The first term on the right-hand side of Eq. (7) is linear
with respect to t0y so that Evar is minimized at a finite value
of t0y which satisfies

t0y � 2
1

8N
≠�H�
≠x 0

. (9)

Apparently the renormalization factors gt and gs due to the
projection operator and their nonlinear dependence on x 0

are the origin of the spontaneous deformation of the FS.
These phenomena cannot be found in the mean-field theo-
ries. The explicit calculations will be published elsewhere.

In summary, we investigated the shape of the FS in the
two-dimensional t-J model by means of the VMC calcu-
lation introducing an additional variational parameter t0y .
We found that the variational energy is minimized around
t0y � 20.1 for various doping rates [17]. The system size
dependence indicates this effect is realized even in the ther-
modynamic limit. The magnitude of the energy gain is
large enough compared with other VMC studies. For ex-
ample, the energy difference between the pure d-wave SC
phase and the coexistent phase of antiferromagnetism and
d-wave SC is comparable to the present energy gain at
the doping rate d � 0.08 [15,18]. Then we have clari-
fied the origin of the energy gain by examining the Van
Hove singularity and the effect of the projection using the
Gutzwiller approximation. Combining our results at zero
temperature and those in high temperature expansion, we
consider that the FS deformation is the most significant
phenomenon in the presence of strong correlation.

Since the nesting property of the FS becomes worse
in the present wave function than in the original t-J
model, the coexistence of antiferromagnetism and d-wave
SC near half-filling [15,18] will be suppressed. Alterna-
tively, we expect some incommensurate antiferromagnetic
correlations which were unexpected in the t-J model.
This is presumably related to the stripe state observed
experimentally.
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