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Critical Behavior of the de Gennes Elastic Constants
near the Nematic-Smectic-A Transition of TBBA
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We have studied the behavior of elastic constants A, B, and C deduced from ultrasound velocity
anisotropies in the vicinity of the nematic-smectic-A transition of terephthal-bis-p-p0-butylaniline. A is
associated with compressibility, B with layer compression, and C with the coupling between compress-
ibility and layer compression. We show that the exponent of A is of the preasymptotic 3D-XY type,
whereas those of B and C are in between the 3D-XY values and those associated with the anisotropic
fixed point. This behavior is consistent with the extended crossover regime predicted by Patton and
Andereck [Phys. Rev. Lett. 69, 1556 (1992)].

PACS numbers: 64.70.Md, 61.30.–v, 62.80.+f
The nematic to smectic-A (N-SmA) transition corre-
sponds to the emergence of a one-dimensional positional
order within an oriented fluid. Interest in this transition
was sparked by de Gennes, who suggested that it could
be continuous and exhibit 3D-XY critical behavior [1,2].
However, in spite of the large quantity of studies which
have been carried out over more than 20 years, this
transition is still not understood, owing to a difference
between the exponents nk and n� associated with the cor-
relation lengths, respectively, parallel and perpendicular to
the director [3]. A new impulse has been provided recently
by (i) experiments showing that the anisotropy (nk fi n�)
exists for compounds with a 3D-XY specific-heat behavior
(a � 0) and (ii) the Patton and Andereck theory [4] pre-
dicting the existence in the nematic phase of an extended
crossover regime due to anisotropic coupling between
the fluctuations of the director and the smectic order
parameter.

In the smectic-A phase, few experiments have been car-
ried out, and data are reported only for the B and D elastic
constants, associated, respectively, with layer compression
and deviation of the director n in relation to the normal to
the layers [5]. In this Letter, we present the first ultrasound
velocity measurements from which it is possible to deter-
mine the critical behavior of elastic constants A, B, and C,
corresponding to the bulk compression, the layer compres-
sion, and the coupling term between bulk and layer com-
pression, respectively. We show that A has a 3D-XY -type
preasymptotic behavior which reflects that of specific heat,
whereas B and C have exponents (wB � 0.31, wC � 0.42)
which are different, and in between those associated with
the 3D-XY model and those associated with the anisotropic
critical point [6]. This result suggests that wB and wC

are crossover exponents which may be associated with the
Patton and Andereck theory.

The compound chosen for this study was terephthal-bis-
p-p0-butylaniline (hereafter referred to as TBBA). It was
synthesized in our laboratory and had a weakly first-order
N-SmA transition around 200 ±C with an enthalpy value
0031-9007�00�85(20)�4313(4)$15.00
of the order of 0.07 kcal�mol. The cell was placed be-
tween the poles of an electromagnet producing a 10 kG
magnetic field, and the samples orientated by heating the
compound to its N phase, then cooling it slowly within
the magnetic field. Our measurements were taken as the
temperature decreased, for three different orientations of
the sample, defined by u � 0±, 45±, and 90±, where u

represents the angle between the director and the direction
of sound propagation. A fresh sample was used for each
angle u. The experiments were carried out using the reso-
nance technique, previously elaborated for studying an-
harmonic effects in TBBA [7], and which enables us to
measure velocity at 1.2 MHz. The cell had an interquartz
gap ranging from 3.5 to 7 mm and was thermally regulated
to within 60.01 ±C. The cell was also connected to a pulse
device allowing damping measurements at 3, 9, 15, 21, and
27 MHz to be taken. Velocity and damping measurements
are completely uncorrelated. The analysis of the velocity
measurements which is presented below was made inde-
pendently of the analysis of the damping measurements
reported and discussed in [8]. A detailed description of
the setup, cell, and measuring protocol is to be found in
Ref. [7].

In order to determine B and C accurately, the following
method was used. For each angle u, we measured the
variation in velocity as a function of temperature, from
T � TAN 1 20 ±C to the temperature at the end of the
experiment. The resulting curves were then superimposed
on each other in the nematic phase. This procedure is
justified by the fact that the velocity measurements in the
nematic phase are independent of angle u. Uncertainty
concerning the velocity measurements stems essentially
from this renormalization and is of the order of 620 cm�s
for the measurements presented in this paper.

Figure 1 gives the behavior of velocity for u � 0±, 45±,
and 90±. It shows that the SmA phase is characterized by
marked velocity anisotropy, due to the layer structure of the
phase. The measurements taken in the immediate vicinity
of the transition are not reported on the figure, as they
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FIG. 1. Temperature dependence of sound velocity at 1.2 MHz
for u � 0±, 45±, and 90±. The solid line represents the regular
term for u � 90±. TAN is the transition temperature determined
by fitting the data for u � 90± with Eq. (4) (see text).

involve greater uncertainty which stems from the fact that,
with the resonance technique, uncertainty as to velocity
measurements increases rapidly when damping becomes
very considerable. Analysis of the results in Fig. 1 using
the formula [9]

rV 2�u� � A 2 2C cos2u 1 B cos4u (1)

enables us to determine the elastic constants A, B, and C
[10]. The remainder of this Letter is devoted first to an
analysis of the critical behavior of A, then to those of B
and C.

Several mechanisms have been put forward to describe
the behavior of velocity above the N-SmA transition. The
first is based on a quadratic coupling between the order-
parameter fluctuations and the density and leads to a criti-
cal decrease dVfluc in the velocity, which is isotropic, in
spite of the uniaxial symmetry of the phase [11]. This
decrease is given by V � Vreg 2 dVfluc, where Vreg is a
regular term representing the variation in velocity expected
in the absence of the N-SmA transition. Since rV 2�u �
90±� � A, the above expression can be rewritten in the
form of

A � Areg 2 dAfluc , (2)

where dAfluc behaves as �T 2 TAN�2a , a being the spe-
cific heat exponent. The behavior of dAfluc thus reflects
that of the specific heat. This result was also obtained from
a dynamic specific-heat theory [12]. Two other mecha-
nisms have also been taken into consideration; one of them
[13] couples the order-parameter fluctuations with direc-
tor, and the other one [14] is associated with the order-
parameter relaxation, which would occur in the nematic
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phase, owing to a dynamic coupling. Both of these mecha-
nisms predict anisotropic critical effects. They will be ig-
nored in the analysis of our results, which show the critical
effects to be isotropic in the N phase.

In the SmA phase, the critical part of A is the sum of the
terms which correspond to two distinct mechanisms:

dA � dAfluc 2 dALK . (3)

The first term comes from the fluctuation mechanism al-
ready envisaged in the N phase, the behavior of which
reflects that of the specific heat. The second represents the
Landau-Khalatnikov (LK) contribution associated with re-
laxation of the order-parameter modulus [15]. Unlike the
fluctuation mechanism, this one is very anisotropic [8,14].
It will be ignored in the analysis of our measurements
which are within the vt ø 1 regime. Equation (2) will
therefore also be used in order to analyze the results ob-
tained in the SmA phase.

The critical behavior of A obtained after subtracting the
regular term, plotted as a solid line in Fig. 1, is shown in
Fig. 2. These data have been analyzed using the follow-
ing expression, which is deduced from that used for the
specific-heat analyses:

dAfluc � E 2 A6
0 jtj

2a�1 1 D6
1 jtjD1 1 D6

2 jtjD2� . (4)

In this expression, t � jT 2 TANj�TAN is the reduced
temperature. The signs “1” and “2” refer to the N and
SmA phases, respectively. A0 is the critical amplitude
and E is the so-called “cusp” constant, showing that the
critical anomaly tends towards a finite value at the tran-
sition. D1 and D2 are the first- and second-order scaling
corrections, and D1 and D2 the exponents associated
with these two corrections. The analyses were carried
out taking both phases into account at the same time in

FIG. 2. Temperature dependence of the critical part of elastic
constant A. The solid line is the fit made with Eq. (4). Tem-
peratures are in K.
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a temperature range which goes from 0.4 to 6 ±C from
the transition (jtjmax � 1.3 3 1022; jtjmin � 8 3 1024).
The analyses conducted without scaling corrections show
that a � 0, which indicates that the data for A are
compatible with 3D-XY behavior. This observation had
led to our fixing exponents a, D1, and D2 at their 3D-XY
values (a � 27 3 1023, D1 � 0.5, and D2 � 1), taking
no account of the second-order scaling-correction term
(D2 � 0). Figure 2 shows that the experimental results
are faithfully represented by Eq. (4). The fit is the solid
line and the resulting parameters are A1

0 � �2.7 6 0.2� 3

1010 dynes�cm2, A2
0 �A1

0 � 0.997 6 0.001, E � �2.6 6

0.2� 3 1010 dynes�cm2, TAN � �199.65 6 0.03� ±C, D1
1 �

20.03 6 0.02, D2
1 �D1

1 � 0.4 6 0.4 with x2
n � 1.19.

The amplitude of scaling correction D1 is smaller than that
associated with the specific heat of the polar compounds
in Ref. [16] but comparable to that of either 40.7 [16]
or the l transition of helium [17]. The fact that a single
scaling correction is sufficient for analysis of the data up
to 6 ±C from the transition suggests that these measure-
ments are closer to the critical region than those of the
polar compounds, which require the use of two scaling
corrections. However, the critical region is not reached,
since data analysis carried out over the same interval with
a � 20.007, but without the scaling correction, leads to
a higher value of x2

n (x2
n � 3). It should be noted that

adding the second scaling correction does not lead to any
significant improvement in x2

n , thus indicating that this
parameter is not useful.

The 3D-XY character of A is not merely the effect of
using many parameters in the fit. Figure 3 shows the criti-
cal behavior of A, in a semilogarithmic plot. The linear
variation observed in both phases up to within �6 ±C of the
transition indicates that the critical behavior of A is near to

FIG. 3. Critical part of elastic constant A versus log jT 2
TANj�TAN. The linear behavior indicates that dA presents a
logarithmic singularity (a � 0), as for liquid helium. Tempera-
tures are in K.
a logarithmic singularity (a � 0). This result shows that
the critical fluctuations are already developed in a tempera-
ture domain very far from the transition, in spite of it being
first order. Analysis of the damping measurements led to
the same conclusion [8]. The fact that the critical behavior
of A remains linear in the vicinity of the transition shows
on the one hand that these data belong to the hydrodynamic
regime and, on the other hand, that the contribution of the
order-parameter relaxation in the SmA phase is weak com-
pared to that of the fluctuations, which confirms our origi-
nal hypotheses.

We have also carried out “first-order” analyses. In or-
der to keep the same number of adjustable parameters, we
assumed that discontinuity of E occurs for an extremely
small temperature difference T1

AN 2 T2
AN � 0 and im-

posed the A2
0 �A1

0 ratio. The results obtained show that
the direct 3D-XY fit (A2

0 �A1
0 � 0.9714) and the inverse

3D-XY fit (A2
0 �A1

0 � 1.029) give values of x2
n which are

comparable to each other and close to those determined
for E1 � E2. These analyses therefore show that it is im-
possible to choose conclusively between a direct or inverse
3D-XY behavior. They also show that the discontinuity of
the cusp constant is weak (DE�E , 2%) and that its sign
depends on the direct or indirect nature of the transition.

For T � TAN, Eq. (4) shows that A is written A�T �
TAN� � Areg 2 E. The values of Areg and E indicate that
A�T � TAN� is negative, which is not physically accept-
able. This result stems from the fact that it is the critical
behavior of the compliance which must be taken into con-
sideration and not that of the elastic constant. Equation (4)
must be thus replaced by the following formula [18]:

dAfluc �
E 2 A6

0 jtj2a�1 1 D6
1 jtjD1 �

1 1 A21
reg�E 2 A6

0 jtj2a�1 1 D6
1 jtjD1��

. (5)

The value of A at the transition is therefore given by A�T �
TAN� � Areg�T � TAN���E 1 Areg�T � TAN��, which
shows that A is positive at the transition. The parame-
ters of the fit are the following: A1

0 � �3.0 6 0.2� 3

1010 dynes�cm2, A2
0 �A1

0 � 0.997 6 0.001, E � �2.9 6

0.2� 3 1010 dynes�cm2, TAN � �199.64 6 0.03� ±C, D1
1 �

20.05 6 0.02, D2
1 �D1

1 � 0.5 6 0.4 with x2
n � 1.16.

The value of x2
n and those of the various adjustable

parameters can be seen to be quite comparable to those
determined previously with the simplified Eq. (4). This
comes from the fact that Eq. (4) is valid as long as
DV�Vreg ø 1 which is realized in the present case
since the maximum value of DV�Vreg � 0.01. The
two formulas are therefore equivalent within the domain
of our analysis and the difference between the two of
them becomes apparent only in the immediate vicinity
of the transition, A becoming negative in the case of the
simplified formula, whereas it has a finite value of the
order of 0.35 3 1010 dynes�cm2 in the case of Eq. (5).

We now consider the behavior of the other two elastic
constants B and C. In the hydrodynamic regime, it is
4315
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FIG. 4. Critical behavior of elastic constants B and C. The
solid lines are the fits made with Eq. (6). Temperatures are
in K.

predicted that B and C will have power-law behaviors.

B � B0twB , C � C0twC , (6)

where wB and wC represent the critical exponents associ-
ated with these two constants. Anisotropic scaling predicts
that wB � 2n� 2 nk [19] and wC � nk 1 h�n� [20].
h� is an exponent associated with the Fisher equality
g � �2 2 h��n�, where g is the susceptibility exponent.
The fits were carried out over a temperature interval
between 0.5 and 7 ±C. They are shown by the solid-line
curves in Fig. 4 and indicate that the measurements of B
and C do indeed follow the power laws given by Eq. (6).
The associated parameters are wB � 0.31 6 0.02, B0 �
�28 6 2� 3 108 dynes�cm2, wC � 0.42 6 0.03, C0 �
�17 6 3� 3 108 dynes�cm2. The important result is that
the values of wB and wC differ from each other and also
from the value expected for the 3D-XY model (wB �
wC � 0.66). It should also be noted that the value of
wB is identical, within the limits of experimental error,
to that determined for other compounds from inelastic
light-scattering or dynamic compression experiments [21].
The value of wC is obtained here for the first time.

The values of wB and wC suggest that the measurements
of B and C are within a critical regime, in between the
3D-XY regime (wB � wC � 0.66) and the regime associ-
ated with the anisotropic critical point (wB � 0, wC � nk

with nk nonspecified). Such a regime has recently been
suggested by Patton and Andereck [4] to explain why the
exponents n� and nk measured in the N phase are dif-
ferent and nonuniversal. This regime is dependent on the
anisotropic character of the coupling between the dn fluc-
4316
tuations of the director and the smectic order parameter
c . Since wB and wC are functions of nk and n�, the fact
that B and C have exponents which are very far from all
the theoretical predictions suggests that these two elastic
constants are under the influence of this coupling, unlike
A, which involves the density coupling. The influence of
the c-dn coupling on the behavior of B and C could be
tested by doping the liquid crystal with molecules which
are nonmesogenic, but which have a formula close to that
of the liquid crystal.
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