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We study the size Rg of random polyampholytes (i.e., polymers with randomly charged monomers)
as a function of their length N . All results of our extensive Monte Carlo simulations can be rationalized
in terms of the scaling theory we develop for the Kantor-Kardar necklace model, although this theory
neglects the quenched disorder in the charge sequence along the chain. We find �Rg� ~ N1�2. The
elongated globule model, the initial predictions of both Higgs and Joanny (~ N1�3) and Kantor and
Kardar (~ N), and previous numerical estimates are ruled out.
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Polyampholytes (PAs) are heteropolymers comprising
neutral, positively, and negatively charged monomers.
Such molecules are often water soluble, offer numerous
applications [1], and can be regarded as simple model
systems for electrostatic interactions in proteins and other
biopolymers. Depending on the method of synthesis, the
charge sequence can be either alternating or random. The
first case is well understood in terms of a theta collapse
due to effectively short-ranged interactions [2,3]. In
contrast, the statistical mechanics of random PAs [4–14]
has turned out to be surprisingly complex. The purpose of
this Letter is to settle a long-standing controversy on the
shape of isolated random PAs in general and the effect of
the quenched disorder in the charge sequence in particular.

The interest in this question was triggered by the dis-
covery of Kantor, Li, and Kardar [7] that random PAs are
sensitive to small disparities in the number of positively
and negatively charged monomers per chain. In an en-
semble of statistically neutral PAs of length N , the typical
net charge is jQj ~ N1�2. Chains with a net charge up
to this value behave as globally neutral (Q � 0) PAs
and form dilute globules of spherical shape as predicted
by Higgs and Joanny [5]. In contrast, the more strongly
charged members of the ensemble adopt strongly elon-
gated conformations leading to a situation where en-
semble averages for quantities such as the gyration radius
for statistically neutral random PAs are dominated by the
untypical, extended chains in the wings of the net charge
distribution [7].

To explain this behavior Kantor and Kardar have pro-
posed a model where, as a function of their net charge and
in analogy to the Rayleigh instability of charged droplets,
the PA globules split into a pearl-necklace–like sequence
of smaller globules connected by thin strings [8,9]. While
polyelectrolytes (PEs) in poor solvent [15] are well
described by the necklace concept [16,17], Kantor and
Kardar have argued that in the PA case the charge in-
homogeneities should drastically modify the necklace
picture. Indeed, computer simulations of PAs reveal a
rich variety of conformations [18], and it is unclear if the
disorder is relevant for ensemble averages of quantities
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as the gyration radius �Rg�. Ignoring all details of the
charge sequence except the net charge, the necklace model
predicts �Rg� ~ N1�2, while the evidence from Monte
Carlo simulations [9] (�Rg� ~ N0.6) and exact enumera-
tions [10] (�Rg� ~ N2�3) rather suggests a faster growth.
Nevertheless, the effect seems to be weaker than predicted
[6] by Kantor’s and Kardar’s original renormalization
group argument (�Rg� ~ N).

In the following we present a complete scaling theory for
the Kantor-Kardar necklace model as well as large scale
computer simulations of various ensembles of quenched
random PAs: Fixed (zero or nonzero) net charge, and ran-
domly charged chains with a typical net charge of order
N1�2. With respect to the length of our chains N # 4096 as
well as the number of independent charge sequences (be-
tween 512 and 1024) we by far exceed previous simulation
studies [9,18,19]. The good statistics for large chains turns
out to be crucial, since our results suggest that deviations
from the predictions of the necklace model for ensemble
averages are merely finite size effects.

We consider isolated, flexible chains of N monomers of
diameter b in a good solvent with no added salt. This
corresponds to the limit of infinite dilution, where the
chains do not form complexes [13] and where counter-
ions, which may be necessary to balance the net charge
of the considered PA ensemble, can be considered as in-
finitely far away. For a particular chain, a fraction f �
f1 1 f2 of the monomers at quenched random positions
carries charges 6e, resulting in a net charge per monomer
of edf � e� f1 2 f2�. The strength of the unscreened
electrostatic interactions is characterized by the Bjerrum
length, lB � e2�ekBT .

Globally neutral chains (df � 0) assume a globular
conformation if they are sufficiently long [5], while for
shorter chains a smooth crossover to self-avoiding walks
(SAWs) occurs. Within the framework of mean field
theory, the attraction energy is estimated via the Debye-
Hückel polarization energy density [4] fDH ~ k3kBT ,
where the inverse squared screening length k2 � lBfc is
proportional to the monomer concentration c. Thus the
attraction will be important on length scales larger than
© 2000 The American Physical Society 4305



VOLUME 85, NUMBER 20 P H Y S I C A L R E V I E W L E T T E R S 13 NOVEMBER 2000
the so-called blob diameter ja � k21. On length scales
below ja the conformation is described as an unperturbed
SAW, so that ja � bgn

a , where ga is the number of
monomers in the blob, and n � 0.59. Since c � ga�j3

a,
the blob size is given as ga � �b��lBf�	1��12n�. The PA
chain is then envisioned as a spherical droplet of blobs;
this minimizes the surface energy which is estimated as
�N�ga�2�3kBT (each surface blob contributes kBT ). The
gyration radius hence scales as

R2
g�df � 0, f, lB�b, N�

R2
SAW

~

(
1 N�ga ø 1 ,
� N

ga
�2�1�32n� N�ga ¿ 1 .

(1)

In analogy to Khokhlov’s description of PEs in poor
solvent [15], a first understanding of the effect of a nonzero
net charge density df can be gained from an elongated
globule model [1,11,12]. A globule becomes extended as
soon as the Coulomb energy kBT �dfN�2lB���N�ga�1�3ja	
exceeds the surface energy kBT �N�ga�2�3; i.e., for N .

gR � f�df2, the number of monomers in a “Rayleigh
blob,” whose size is given by jR � ja�gR�ga�1�3. The
globule is stable for ga , N , gR , while for N . gR

the elongated globule model predicts an object of diameter
jR and length �N�gR�jR , whose relative extension is thus
given by

R2
g�df, f, lB�b, N�

R2
g�df � 0, f, lB�b, N�

~

(
1 N�gR ø 1 ,
� N

gR
�4�3 N�gR ¿ 1 . (2)

However, Kantor and Kardar [8,9] argued that the elec-
trostatic repulsion should rather result in necklace-like
conformations, where spherical regions with net charges
below the instability threshold alternate with thin strings.
Based on this concept, Dobrynin et al. [16] developed a
scaling theory for PEs in poor solvent, which has been
recently shown in computer simulations to describe the
data much better than the earlier Khokhlov picture [17].
Applied to PAs, one expects the pearl and string diame-
ters to be given by jR and ja, respectively. The length
l � jR�jR�ja�1�2 ¿ jR of the strings is then again de-
termined by the equilibrium between the additional surface
energy of the strings, kBTl�ja, and the electrostatic repul-
sion between the pearls, kBT �dfgR�2lB�l. Note that even
though the strings make up for most of the length of the
necklace, they contain only a negligible fraction of the PA
volume, with Rg�df, N� � �N�gR�l. Hence the necklace
model predicts a different scaling for the chain dimensions,

R2
g�df, f, lB�b, N�

R2
g�df � 0, f, lB�b, N�

~
jR

ja

µ
N
gR

∂4�3

, N�gR ¿ 1 ,

(3)

than the elongated globule model, Eq. (2). It should be
noted that in the necklace case no universal scaling func-
tion of just one scaling argument N�gR occurs; i.e., a
complete data collapse is possible only for either the globu-
lar regime or the necklace regime, the reason being that
4306
the regimes are separated by a first-order phase transition
[16,17]. Conversely, the elongated globule model predicts
just a smooth crossover, such that only a single scaling
function occurs.

Finally, we consider the ensemble treated by Kantor and
Kardar, randomly charged PAs with a Gaussian net charge
distribution of zero mean and width �df2� � f�N . The
calculation of averages such as �Rg� is somewhat subtle.
For N ø ga one will, of course, observe SAW behavior,
while for N ¿ ga the ensemble comprises contributions
from both the globular and the necklace phases. Indeed,
each charge realization implies a certain value of gR �
f�df2, the typical value being gR � N . Hence there
will always be a finite (N-independent) fraction of chains
whose gR is small enough that they are in the extended
necklace phase. This fraction will asymptotically domi-
nate the average value of Rg. Thus the average stretching
relative to the globule is found by just using Eq. (3), where
gR is replaced by N . Since then jR�ja � �gR�ga�1�3 �
�N�ga�1�3, we find

R2
g��df� � 0, f, lB�b, N�

R2
g�df � 0, f, lB�b, N�

~

(
1 N�ga ø 1 ,
� N

ga
�1�3 N�ga ¿ 1 . (4)

One thus finds �Rg� ~ N1�2 for the random PA necklace
[8,9], which is formally a random walk (RW) exponent,
while the underlying structure is completely different.
Note that within the elongated globule model (i.e., dis-
regarding the possibility of a Rayleigh instability) the
net charge fluctuations are predicted to be irrelevant as
originally assumed by Higgs and Joanny [5].

In our Monte Carlo simulations we studied a bead-spring
model with short-ranged potentials to model connectivity
and excluded volume. All monomers are charged � f � 1�
and interact via an unscreened Coulomb potential. This
yields the largest amount of charge fluctuations with the
smallest number of monomers, while we are not inter-
ested in details of the chain structure below the distance
between neighboring charges. We varied the blob size ga

by studying different values of lB�b � 1�64, . . . , 4. Note
that in order to reach the O �103� blobs necessary for the
formation of well-defined globules and necklaces, we had
to push the strength of the electrostatic interaction to or
even slightly beyond the validity limit [lB�b � O �1�] of
the blob picture.

Further factors which facilitated the feasibility of the
investigation were the use of a large parallel computer,
exploiting the inherent parallelism resulting from the dis-
order realizations, plus the application of a very efficient
hybrid algorithm which combines local moves with the
pivot technique [20], while starting off from a configu-
ration that was generated via the enhanced configurational
biased Monte Carlo method [21] with already equilibrated
bond lengths. At each state point we studied 512 or 1024
different realizations of the disorder, each of which was
observed for a fixed run time. For the shorter chains and
smaller charges, this run time was long enough to yield



VOLUME 85, NUMBER 20 P H Y S I C A L R E V I E W L E T T E R S 13 NOVEMBER 2000
10
1

10
2

10
3

N
10

1
10

2
10

3

N

10
−1

10
0

<R
g

2 >/
N

l2

SAW

G
LO

BULE

SAW

RW

(a) (b)

FIG. 1. Radius of gyration as a function of chain length N for
(a) globally (full symbols) and (b) statistically (open symbols)
neutral random PAs with lB�b � 1�64 �±�, 1�16 ���, 1�4 ���,
1�2 ���, 1 ���, 2 ���. The data are normalized to the size
of random walks, while the straight lines indicate the slopes
expected for self-avoiding walk (Rg ~ Nn , n � 0.588), random
walk (Rg ~ N1�2), and globular (Rg ~ N1�3) conformations.

a few hundred statistically independent configurations per
realization (as estimated via the autocorrelation function of
the end-to-end vector). On the other hand, the long glob-
ally neutral chains at strong charging were very difficult to
equilibrate in their dense globular state. Reasonable sta-
tistics (with at least a few ten independent configurations)
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FIG. 2. Scaling plot of the data presented in Fig. 1. The full
symbols show the shrinking of globally neutral PAs relative to
uncharged SAWs, while the open symbols represent the swelling
of statistically neutral relative to globally neutral PAs. The
data are plotted as a function of the reduced chain length N�ga
and support Eq. (1) and, in particular, the prediction Eq. (4) of
the necklace model. The dashed line corresponds to the earlier
numerical estimate Rg ~ N0.6 [9], which is clearly not supported
by the data.
is available up to lB�b � 1, while for lB�b � 2 only the
data up to N � 512 are reliable. For lB�b � 4 the globu-
lar state was practically inaccessible, and only necklaces
could be studied. For further details we refer the reader to
Ref. [22], where the analogous model was simulated with
the same methods to study PE adsorption. All in all, we
needed roughly 5 3 104 hours single-processor CPU time
for the calculation.

Figure 1 shows the chain length dependence of the gyra-
tion radii of globally (full symbols) and statistically (open
symbols) neutral random PAs. The data show unequivo-
cally that sufficiently long random PAs with a global
neutrality constraint adopt globular conformations (Rg ~

N1�3), while unconstrained random PAs are on the average
significantly more extended, with Rg ~ N1�2. Clearly, a
growth of Rg with N which is even faster than that of the
SAW, as was suggested by Refs. [9,10], can be ruled out.

The corresponding scaling plot (Fig. 2) supports the
Higgs and Joanny [5] picture of the behavior of globally
neutral chains as well as our formulation of the necklace
model for PAs carrying a net charge. For the SAW data we
took those with the weakest charge lB�b � 1�64, which is
very close to the true SAW behavior for our chain lengths.
One also sees that the crossover from the SAW into the
globule is subject to considerable corrections to scaling,
which are probably mainly due to the rather small ga val-
ues of our simulation.
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FIG. 3. Swelling of random PAs due to a nonzero net charge
density df . 0. We show three data sets lB�b � 1 ���, 2 ���,
4 ��� for systems with fixed asymmetry df � 1�32, and varying
chain lengths 32 # N # 4096 and one data set with lB�b �
1 ���, fixed chain length N � 1024 and charge asymmetries
1�128 # df # 1�2. The shaded areas indicate the parameter
regions where the scaling forms Eqs. (2) and (3) break down,
corresponding to the elongated globule and the necklace model,
respectively. The dashed line represents the function �N�gR�4�3

predicted by both models for N�gR ¿ 1. The insets show
typical conformations for chains with N � 1024 and lB�b � 4
with df � 0 and N�gR � 4, respectively.
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FIG. 4. Ensemble averages for the internal structure of statis-
tically neutral random PAs with N � 2048 and lB�b � 1. The
1 symbols in the inset show the mean square distance �r2

ij� of
two monomers as a function of their distance ji 2 jj along the
chain in comparison to a ji 2 jj231�2 power law. The figure
shows the structure factor S�k� (3) in the Kratky representa-
tion as a function of kRg in comparison to the Debye function
(solid line) for random-walk–like fractal objects and the result
one obtains in the Gaussian approximation from the data in the
inset (1).

In order to better characterize the Rayleigh instability
we also investigated ensembles of random PAs with a fixed
nonzero net charge. Figure 3 demonstrates that the elon-
gated globule model describes the onset of the deformation
up to elongations by about a factor of 2. The Rayleigh in-
stability occurs around N�gR � 2, while for N�gR . 3
the data are in excellent agreement with the prediction
Eq. (3) of the necklace model.

Quite interestingly, the exponent 1�2 even seems to
characterize the ensemble averages for the mean square
internal distances �r2

ij� � ���ri 2 �rj�2� in statistically neu-
tral PAs (see the inset of Fig. 4). That random PAs are,
however, far from being random-walk–like fractal objects
is demonstrated by the structure factor S�k� (3 in Fig. 4)
which clearly deviates from the Debye function. For com-
parison, we have also calculated S�k� in the Gaussian
approximation �exp�i �k ? �rij	� � exp�2k2�r2

ij��2	 showing
that the distribution function p�rij� cannot be specified by
its second moment alone.

In summary, our results have demonstrated a remarkable
success of the simple necklace model for random polyam-
pholytes. In particular, the scaling of the average extension
of the chains is not affected by the quenched disorder of
the charge positions along the chains. Nevertheless, a more
detailed description of the relation between the charge se-
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quence on individual chains and their typical conforma-
tions remains a challenge.
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