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Anisotropic Nonlinear Elastic Properties of an Icosahedral Quasicrystal
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We show that the nonlinear behavior of transverse acoustic waves can reveal the anisotropic structure of
an icosahedral quasicrystal, at the macroscopic level. We report experiments performed in i-Al-Pd-Mn.
We observe that a primary transverse acoustic wave can generate a second harmonic transverse acoustic
wave. We also observe a specific relation between the polarization directions of those waves. These
observations are manifestations on a macroscopic scale of the long-range order in quasicrystals.

PACS numbers: 61.44.Br, 43.25.+y, 62.20.Dc
At the microscopic level, diffraction studies show that
quasicrystals exhibit a structural orientational long-range
order responsible for icosahedral symmetries. Thus, quasi-
crystals are fundamentally anisotropic. At the macroscopic
level, physical properties are expected to be anisotropic and
this point must be investigated. However, the symmetry
of the icosahedral group is so high that macroscopic prop-
erties are isotropic unless they are described by a tensor
with rank N $ 5 [1]. Therefore, the commonly observed
properties are isotropic and do not reveal the anisotropic
structure of the quasicrystal. Here are two examples. The
magnetization is governed by a second-rank tensor and is
found to be isotropic in icosahedral Al-Cu-Fe [2]. The
linear elastic properties are governed by a fourth-rank
tensor (so called, second-order elastic constants) and are
found to be isotropic in Al-Li-Cu and Al-Pd-Mn [3–5].
Small anisotropy of the nonlinear magnetic properties
was reported in Al-Pd-Mn and attributed to the anisotropy
of N-rank magnetic tensors (N $ 6). However, the data
could not be fitted within this assumption [6]. Anisotropy
of the ultrasonic attenuation was also reported but was
attributed to structural defects (phasons) [5]. Therefore, to
our knowledge, no clear evidence for intrinsic anisotropic
physical properties has been reported at the macroscopic
level. The nonlinear propagation of elastic waves is a
macroscopic phenomenon which can distinguish icosa-
hedral from isotropic symmetry since the nonlinear
elastic properties depend on a sixth-rank tensor (so called
third-order elastic constants) [7]. We present in this paper
a theoretical analysis of the nonlinear propagation of
transverse waves in an icosahedral solid, and we show
these waves can generate second harmonic transverse
acoustic waves. We stress that this process is forbidden in
an isotropic solid and can be used to reveal the anisotropic
structure of quasicrystals. We also report here such ex-
periments performed in an Al-Pd-Mn single quasicrystal.
The results are in agreement with our theoretical analysis
and, in particular, second harmonic generation is observed
when propagation is along a threefold axis. Therefore,
our results clearly reveal, at the macroscopic level, the
anisotropic structure of the icosahedral Al-Pd-Mn.
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Let us call XYZ the standard orthogonal coordinate sys-
tem, aligned with three twofold axes. In XYZ, the Brugger
third-order elastic constants are Cijk . There are four inde-
pendent terms C111, C112, C113, and C456, instead of three
for isotropic symmetry [8] [in our opinion, the erratum
in [8] still contains a mistake and the correct expression
for C456 is C456 � 2

1
2C144 2

1
2 �t 2 1�C155 1

1
2tC166].

The isotropic case is deduced from the icosahedral one
with the additional relation C112 � C113. Thus, it is useful
to define the quantity

D � C112 2 C113 , (1)

which measures the departure from the isotropic case.
Whether D is large enough to induce observable effects
is an open question. Fundamentally, D fi 0 because the X
and Y directions are not equivalent, although they are both
twofold axes. They have the same environment but with
different orientations: both axes are surrounded by two
threefold and two fivefold axes. However, in the XY plane,
one axis is surrounded by two threefold axes, whereas the
other is surrounded by two fivefold axes. This difference
is rather subtle and a small value of D is expected. A
sensitive acoustic probe is therefore desirable. Transverse
acoustic waves are such sensitive probes. Indeed, because
of the quadratic character of the nonlinear terms, symme-
try arguments show they do not produce second harmonic
waves in isotropic solids (contrary to longitudinal waves).
This is confirmed by calculus [9]. Let us show that this
process is allowed in an icosahedral crystal for propaga-
tion along a threefold axis and forbidden for propagation
along a twofold or a fivefold axis.

The nonlinear equations of motion are conveniently ex-
pressed in an orthogonal coordinates system xyz where x is
aligned with the propagation direction and z with a symme-
try axis (if such an axis exists). The derivation of the non-
linear equations of motion is lengthy but straightforward.
Let us first consider the propagation along a threefold
axis. xyz is deduced from XYZ by a rotation through the
angle a about Z, where cosa � t�

p
3 and sina � 1�

t
p

3 [t � �1 1
p

5 ��2 is the golden number]. Accord-
ingly, x is along a threefold axis and z is along a twofold
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axis. Approximate equations of motion can be obtained by a perturbation method [10,11]. For fundamental transverse
waves propagating along a threefold axis, we get
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where u is the acoustic displacement field, u�I� is the fun-
damental field (i.e., the field when the nonlinear terms are
neglected), and u�II� is a small correction arising from the
nonlinear terms. C44 is a second-order elastic constant. r

is the mass density. Taking into account the initial condi-
tions (i.e., assuming that a transverse acoustic wave with
a single frequency component v�2p is emitted at x � 0),
we find

u�I� �

0
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CA cos�vt 2 kx� , (6)
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where a, f, and k � 6
p

rv2�C44 are the amplitude, the
polarization angle, and the wave vector of the fundamental
wave, respectively. Therefore, a transverse wave propa-
gating along a threefold axis produces a transverse sec-
ond harmonic wave which grows linearly with x. The
polarization angle c of this harmonic wave (with respect
to y) is given by

c � 22f . (8)

This relation is consistent with the threefold symmetry.
Conversely, it is easily seen that such a relation is not con-
sistent with an isotropic symmetry axis. Thus, from an ex-
perimental point of view, if such a relation is observed, we
may safely conclude that the solid structure is anisotropic
without any detailed theoretical analysis of the nonlinear
propagation in either isotropic or anisotropic solids.

Transverse waves propagating along an arbitrary direc-
tion will, in general, produce second harmonic transverse
waves (twofold and fivefold axis directions are exceptions;
see below). However, the relation between the polarization
direction of the fundamental and harmonic waves would be
more complicated than given by (8). Propagation along
a fivefold axis or along a twofold axis can be studied
in the same way as propagation along a threefold axis.
When studying propagation along a fivefold axis, xyz is
deduced from XYZ by a rotation through the angle b about
Z, where cosb � 1�

p
1 1 t2 and sinb � t�

p
1 1 t2.
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When studying propagation along a twofold axis, xyz is
the standard coordinate system XYZ. The equations of
motion of transverse waves are similar to Eqs. (2)–(5) ex-
cept that the right-hand terms of (4) and (5) are zero. Thus,
transverse waves propagating either along a fivefold axis
or along a twofold axis do not produce a harmonic wave.

Equations (2)–(5) are also valid in an isotropic solid but,
in that case, D vanishes and we see that transverse waves
propagate undistorted: there is no harmonic generation by
transverse acoustic waves in an isotropic solid.

We studied the icosahedral quasicrystalline phase Al68.2-
Pd22.8Mn9.0. The sample is a single quasicrystal grown
using the Czochralski technique. The detailed production
and characterization of the sample have been reported
previously by other authors [12]. Figure 1 is a sketch of
the sample orientation and mounting. It is oriented by
x-ray diffraction. A twofold axis is found (here named
A2) and defines the z direction. Then, a threefold and a
fivefold axis, both perpendicular to A2 are determined
(A3 and A5). In case of propagation along the threefold
axis (the fivefold axis), A3 (A5) defines the x direction.
The y direction is such that xyz is a direct Cartesian

  x

(A3 or A5)

y

  z
(A2)

θR

θE

Emitter

Receiver

FIG. 1. Orientation of the sample and of the acoustic trans-
ducers. uE and uR are the polarization angles of the emitter and
of the receiver, in the yz plane, with respect to y.
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coordinate set. Two sets of faces, perpendicular to A3 and
A5, are then cut and polished, in the same sample. The
sample thickness is 7.7 and 5.4 mm along A3 and A5, re-
spectively. Acoustic transducers are glued on the opposite
parallel faces. A transducer emits a pulse of transverse
acoustic wave at 22 MHz (the high frequency electrical ex-
citation is filtered with a bandpass filter), and another one
detects the acoustic pulse after propagation in the sample.
The emitter is glued with orthoterphenyl (melting point
�60 ±C) and the receiver is glued with phenylsalicylate
(salol, melting point �40 ±C). Thus, it is possible to rotate
the receiver in the yz plane, by successive melting and
freezing of the salol bond, without modifying the
characteristics of the emitter (polarization direction, elec-
tromechanical coupling factor, …). The receiver can detect
signals between 15 and 60 MHz (resonance frequency:
44 MHz). The transducers are LiNbO3 plates (163±

rotated Y cut) with a well controlled polarization. Their
polarizations are in the yz plane and the polarization
angles are measured with respect to the y axis: uE and uR

for the emitter and the receiver, respectively. As far as
linear elasticity is considered, the sample behaves as if it
were isotropic. In our experiments, the emitter therefore
launches a pulse of transverse wave, polarized in the yz
plane, with polarization angle uE . The receiver is used to
detect both the fundamental wave and the possible second
harmonic wave. Bandpass filtering at 44 MHz is provided
when the second harmonic wave is looked for. In an
experimental run, the emitter is fixed and the receiver
is rotated in the yz plane. Different runs correspond to
different values of uE .

When transverse waves propagate along A3, the fre-
quency spectrum of the first transmitted pulse displays
two peaks, at the excitation frequency 22 MHz and
at the double frequency 44 MHz. Figures 2(a) to 2(f)
display the magnitude of the 22 and 44 MHz components
versus the receiver polarization angle uR , for characteristic
values of the emitter polarization angle uE . The relative
uncertainty on the magnitudes is about 10%. It mainly
results from the fluctuations of the receiver coupling factor
arising from the successive melting and freezing of the
salol bond. We observe that each component at 22 and
44 MHz goes through a maximum and a minimum value.
Let us call uR1 and uR2 the location of the maximum
of each components. We observe that �uR1 2 uR2�
depends on uE . We have also measured the amplitude
of the 44 MHz component versus that of the 22 MHz
component, for given values of uE and uR . A quadratic
relation is observed.

When transverse waves propagate along A5, the double
frequency component is very small and does not depend
on uR . Figures 2(g) and 2(h) display the measurements
for uE � 0±. Similar results were obtained for uE � 90±.

Clearly, the double frequency component which is ob-
served when transverse waves propagate along A3 results
from some nonlinear process. This process originates
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FIG. 2. Amplitude of the 22 and 44 MHz components of the
first transmitted pulse versus the receiver polarization angle uR ,
for various values of the emitter polarization angle uE . Open
circle: 22 MHz. Solid circle: 44 MHz. (a) to (f): propagation
along A3. (g) and (h): propagation along A5. The full lines are
fits based on jA cos�uR 2 u�j with free parameters A and u.

from the sample and cannot be located in the electronic
setup, including the transducers. Otherwise, �uR1 2 uR2�
would not depend on uE and a large harmonic signal would
also be observed when transverse waves propagate along
A5. Therefore, our results give evidence that a transverse
acoustic wave propagating along A3 produces a double
frequency harmonic transverse acoustic wave. We now
discuss the only propagation along A3. The amplitudes
measured at 22 and 44 MHz are maximum (minimum)
when the polarizations of the relevant wave and of the
receiver are parallel (perpendicular). We have investigated
the relation between the polarization angles c and f of the
4303
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FIG. 3. Polarization direction c of the second harmonic wave
versus polarization direction f of the fundamental wave. The
full line is a theoretical line deduced from Eq. (8).

second harmonic and fundamental waves. For that pur-
pose, we have fitted the amplitudes measured at 22 and
44 MHz with jA cos�uR 2 u�j where A and u are free
parameters and where u is the wave polarization angle.
Figure 2 displays some fits and Fig. 3 displays the experi-
mental relation between c and f. Actually c and f are
determined modulo p . Thus, in Fig. 3, f is arbitrarily set
in [2p�2, p�2] and c is plotted as a multivalued function.
The full line is deduced from Eq. (8). Very good agree-
ment between the experimental points and the theoretical
relation (c � 22f) is observed. It must be pointed out
that the polarization directions rather than the polarization
angles are determined. This is not a problem since op-
posite directions are related through a p phase shift and
polarization directions rather than polarization angles have
a physical meaning. Nevertheless, it would be significant
to know the phase relation between the fundamental and
harmonic vibrations. Unfortunately, in our experiments,
the phase difference between two acoustic waves with dif-
ferent frequencies cannot be measured because the phase
shift between the input acoustic signal and the output elec-
tric signal of the receiver depends on the frequency and is
not known.

The production of a second harmonic wave by trans-
verse acoustic waves shows that the solid is anisotropic
since this process is forbidden in an isotropic solid. This
point is confirmed by the experimental relation between
the polarization directions of the fundamental and har-
monic waves which is inconsistent with isotropic sym-
metry. Last, the different behavior of transverse acoustic
waves propagating along A3 or A5 also demonstrates that
the solid is anisotropic. Our theoretical analysis shows
that the observed macroscopic properties are consistent
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with the icosahedral symmetry, revealed by diffraction ex-
periments, at the microscopic level. In principle, the sign
of D could be deduced from the phase relation between the
fundamental and harmonic vibrations, but we already men-
tioned that this information is not available in our experi-
ment. In principle again, the value of D could be deduced
from a comparison of the respective amplitudes of the fun-
damental and harmonic waves [see Eqs. (6) and (7)]. Un-
fortunately, the electromechanical coupling factors at 22
and 44 MHz, and thus the waves displacement amplitudes,
cannot be accurately measured. Moreover, the acoustic at-
tenuation should be taken into account. Another kind of
experiment should be devised to measure D.

In conclusion, the propagation of acoustic waves is a
macroscopic phenomenon which can distinguish a qua-
sicrystal from a crystal or from a glass: linear properties
can distinguish a quasicrystal from a crystal (unlike crys-
tals, the linear elastic tensor is isotropic) and nonlinear
properties can distinguish a quasicrystal from a glass (un-
like a glass, the nonlinear elastic tensor is anisotropic). We
have studied the nonlinear propagation of transverse acous-
tic waves in an icosahedral Al-Pd-Mn single domain. Our
results show clear manifestations on a macroscopic scale
of the anisotropic structure of this solid and therefore con-
firm the existence of an internal long-range order.

We thank M. de Boissieu for kindly providing the
i-Al-Pd-Mn single domain.
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