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Triangle Map: A Model of Quantum Chaos
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We study an area preserving parabolic map which emerges from the Poincaré map of a billiard particle
inside an elongated triangle. We provide numerical evidence that the motion is ergodic and mixing.
Moreover, when considered on the cylinder, the motion appears to follow a Gaussian diffusive process.
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The investigation of the quantum manifestations of
classical dynamical chaos has greatly improved our
understanding of the properties of quantum motion. Even
though, besides some very special cases, the nonlinear
terms prevent exact solution of the Schrédinger equation,
still important useful information can be obtained concern-
ing statistical properties of eigenvalues and eigenfunctions.
An important discovery has been the phenomenon of
quantum dynamical localization [1] which consists of the
quantum suppression of deterministic classical diffusive
behavior. This suppression takes place after a relaxation
time scale 7z which is defined as the density p of the
operative eigenstates [2], namely, those states which
enter the initial conditions and therefore determine the
dynamics. One finds tg ~ 1//?% in systems with normal
diffusion in classical case, measured in natural units of
time like the number of bounces in billiards. For ¢ < tg,
the quantum motion mimics the classical diffusive behav-
ior and relaxation to statistical equilibrium takes place.
The remarkable fact is that quantum “chaotic” motion is
dynamically stable as it was illustrated in [3]. This means
that, unlike the exponentially unstable classical chaotic
motion, in the quantum case errors in the initial conditions
propagate only linearly in time. More precisely, besides
the relaxation time scale 7z, a second very important time
scale exists, the so-called random time scale ¢, ~ In#,
below which also the quantum motion is exponential
unstable. However, as noted in [2] ¢, < tg, and therefore
the quantum diffusion and relaxation process takes place
in the absence of exponential instability. It should be
noticed that, even though the time scale 7, is very short,
it diverges to infinity as /i goes to zero and this ensures
the transition to classical motion as required by the
correspondence principle.

Therefore, typical quantum systems exhibit a new type
of relaxation for which we do not have yet a physical de-
scription. In terms of the classical ergodic hierarchy, quan-
tum systems can be at most mixing. While exponential
instability is sufficient for a meaningful statistical descrip-
tion, it is not known whether or not it is also necessary.
Several questions remain unanswered; e.g., there is no
general relation between the rate of exponential instabil-
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ity and the decay of correlations. Moreover, as shown in
[4], quantum systems provide examples which show that
linear dynamical instability is not incompatible with expo-
nential decay of Poincaré recurrences.

In a recent paper a physical example has been found
[5], a billiard in a triangle, which has zero Kolmogorov-
Sinai entropy (the instability is linear only in time) but
which possesses the mixing property [6]. This charac-
teristic makes systems of this type good candidates for
the discussion of the above mentioned problems. In the
present paper, starting from the discrete bounce map for
the billiard in a triangle, we derive an area preserving,
parabolic, classical map. In other words, the map is mar-
ginally stable; i.e., initially close orbits separate linearly
with time. We will show that this map is mixing, with
power law decay of correlations and exponential decay
of Poincaré recurrences, and has a peculiar property: ab-
sence of periodic orbits. Moreover, when the map is
considered on the cylinder, it exhibits normal diffusion
with the corresponding Gaussian probability distribution.

Let us consider the following discontinuous skew trans-
lation on the torus, with symmetric coordinates (x,y) €
T>=[-1,1) X [-1,1),

=y, + asgnx, + B (mod2),

(mod2),

Yn+1 (1)

Xn+1 = Xy T Yn+1

where sgnx = =1 is the sign of x. The map (1), which we
will call “the triangle map,” is a parabolic, piecewise linear,
one-to-one (area preserving) map, detJ = 1, trJ = 2 with
J := 0(yu+1,%n+1)/0(yn, x,) = 1. It is known that (con-
tinuous) irrational skew translations [the above map (1)
with @ = 0 and irrational B3] are uniquely ergodic [7] and
never mixing [8]; in fact, they are equivalent to interval
exchange transformations. However, the triangle map may
have more complicated dynamics, and we show below that
discontinuity may provide a mechanism to establish the
mixing property. Noninvertible piecewise linear 2D para-
bolic maps have been studied in Ref. [9].

The triangle map is related to the Poincaré map of the
billiard inside the triangle with one angle being very small.
Indeed, let us assume that the small angle of the billiard can
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be written as y = /M with some integer M > 1. Then
the billiard dynamics may be unfolded by means of reflec-
tions over the two long sides of the triangle into the dy-
namics inside a nearly circular 2M-sided polygon. Within
relative accuracy of 1/M, the approximate Poincaré map
inside such a polygon, relating two successive collisions
with the short sides of the triangle—the outer boundary
of the polygon—reads

= v, + 2(u, — [u,] — M(_l)[u”])’

= Up — 2vn+l,

Un+1
2

Un+1

where yu, is the polar angle and yv, is the angle of in-
cidence of the trajectory in the nth collision. The symbol
[x] is the nearest integer to x. The parameter u controls
the asymmetry between the other two angles 7, ' of the
triangle, namely, n,{ = 7/2 — y(% + w), and we as-
sume that the triangle has all angles smaller than 7 /2,
ie., |u| = % As shown in [5], the system is equivalent
to the mechanical problem of three elastic point masses
on a ring (here one particle being much lighter than the
other two). It is interesting to note that in the scaled vari-
ables (u,v) the small parameter y scales out from the
map and the limit y — O simply means that the range
of variables u, € [0,27/v], v, € [—7/Q2y), 7/(2y)]
becomes the entire plane R?. The above map can be
compactified onto a torus T2 by considering one “primi-
tive cell” [u, (mod2),v, (modl)]. After transforming the
coordinates as y, = 2(—1)"(u, + v, — %) (mod2), x,, =
(=D™"(u, — %) (mod?2), we obtain the discontinuous skew
translation of a torus (1) with « = 4u and 8 = 0.

In the following we consider the general case of the tri-
angle map with parameters a and 8 being two indepen-
dent irrationals. The particular case 8 = 0 will be briefly
discussed at the end of the paper. We fix the parameter
values @« = (3(/5 — 1) — e 1)/2, B=GK5 - 1) +
e~ ')/2, although qualitatively identical results were ob-
tained for other irrational parameter values.

As a first step we make a detailed and careful test
of ergodicity of the triangle map. To this end, follow-
ing [10], we discretize the phase space T? in a mesh
of N = N; X Nj cells and then measure the number of
cells n(r) visited by a given orbit up to discrete time ¢.
Computing the phase space averages () by averaging over
many randomized initial conditions we compare the quan-
tity #(t) = (n(¢)/N) thus obtained with the corresponding
rrm(?) for the random model in which each throw onto a
mesh of N cells is completely random. As it is known,
in the latter case, rpm() = 1 — exp(—¢/N). The result
shown in Fig. 1 provides strong evidence of (fast) ergodic-
ity (without any secondary time scales): namely, the ex-
ploration rate r(r) of phase space for the triangle map
approaches 1 as t — o and, for sufficiently fine mesh N,
is arbitrarily close to the random model rgm(z).

Having established with reasonable confidence that the
triangle map is ergodic, we now turn our attention to the
mixing property. This amounts to showing asymptotic
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FIG. 1. Deviation of the filling rate from the random model in

log-normal scale for three different mesh sizes N = 10* (dot-
ted), N = 10° (dashed), and N = 10° (solid curve).

decay of time-correlation functions of arbitrary L’ ob-
servables. The extensive numerical experiments we have
performed suggest that arbitrary time-correlation functions
decay asymptotically with a power law { f(¢)g(0)) oc 1=
with the value of the exponent o close to o = 3/2. In
Fig. 2a we show the decay of autocorrelations of a typical
observable f = cos(ary) [11]. The property of mixing
and the nature of decay of correlations are intimately
related to the spectral properties of the unitary evolu-
tion (Koopman) operator over L? space of observables

over T2. The value o > 1 we have empirically found
l AN
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FIG. 2. The autocorrelator (a) C(t) = (cos(y;) cos(myy)) av-
eraged over 2 X 10° orbits of length 16384 with randomized
initial conditions. The dashed line has slope —3/2. In (b)
we show the corresponding spectral density. Note that peak
at @ = 7 /2 indicates a strong component of period 4.
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implies an absolutely continuous spectrum. Performing
the inverse Fourier transform of the time autocorrelator
C(t) == (f()f(0)) = [dus(w)e’®" one calculates the
spectral density dus(w)/dw which should be a nonsin-
gular and continuous but nonsmooth and nonanalytic
function, according to the (power law, o > 1) nature of
decay of correlations. In Fig. 2b we show the spectral
density dus(w)/dw which is apparently continuous but
not a continuously differentiable function. In fact, we
suggest that the discontinuities of the derivative are dense
in order to ensure the correlation decay with the power o
which is between 1 and 2.

A very efficient tool for investigating the statistical
properties of dynamical systems is the study of Poincaré
recurrences, i.e., the probability P(¢) for an orbit to stay
outside a specific subset A C T? for a time longer than
t. In Fig. 3 we plot the Poincaré recurrence probability
P(t) for the map (1) and for several different subsets
of the form A = [0,b] X [0,b]. The result is quite
unexpected. Indeed, for any sufficiently small set (small
b) the return probability appears to decay exponentially
P(t) o« exp(—At). Moreover, the exponent A is very close
to the Lebesgue measure of the subset u = | A, as in the
case of the random model of completely stochastic dynam-
ics for which Pry(7) = exp(— ut). Therefore the triangle
map, which is characterized by a linear separation of
orbits, exhibits exponential decay of Poincaré recurrences,
typical of hyperbolic systems. Notice that in strongly
chaotic systems with positive Lyapunov exponents, the
presence of a zero measure of marginally unstable orbits
(e.g., bouncing balls in the Sinai billiard) leads to a power
law decay of Poincaré recurrences. The simultaneous
presence in our model of a power law decay of correlations
and exponential decay of Poincaré recurrences is a fact for
which, so far, we have no explanations. Indeed, even if
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FIG. 3. The Poincaré recurrence probabilities P(r) for three
different subsets [0,0.1] X [0,0.1] (solid), [0,0.2] X [0,0.2]
(dashed), and [0,0.4] X [0,0.4] (dotted curve). Thick curves
give numerical data obtained by computing the return proba-
bility to the subset A for a single orbit of length 3 X 10''.
Thin curves are theoretical estimates for fully random dy-
namics, P;(t) = exp(—ut), where u is the relative Lebesgue
measures of the above sets, namely, u = 1/400, 1/100,1/25,
respectively.

there are no general rigorous theorems, it has been conjec-
tured that correlations of dynamical observables have the
same decay as the integrated Poincaré recurrences [12],
namely, C(¢) ~ Pi(t) :== [, dr P(7) for asymptotically
long times ¢. This relation is obviously violated in our
model (1), and this interesting point requires further
investigations.

Our last step is the investigation of the diffusive prop-
erties of the system. To this end we consider the triangle
map on the cylinder [y € (—,)]. In order to take into
account the constant drift of y, with “velocity” 8 we find
it convenient to introduce a new integer variable p, € Z:

yn:y0+ﬂn+apn, (3)

which has, by definition, vanishing initial value py = 0,
and then study the diffusive properties in the variable p,,.
Our numerical results shown in (Fig. 4) provide clear nu-
merical evidence for normal diffusive behavior. In par-
ticular, we obtained a very accurate linear increase of the
second moment (notice the long integration time),

((pust — pu)?y = (p} = Dt, )

with diffusion coefficient D = 1.654. The almost per-
fect Gaussian distributions of p, — py = p, obtained at
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FIG. 4. The normal diffusion of the map (1) on a cylinder.
In (a) we show averaged squared displacement of an average
over 107 orbits of length 2 X 10° (solid line) compared with the
straight line (dashed) with slope D = 1.654. In (b) we show the
corresponding distribution of displacements at three different
times (¢ = 20000, 60 000,200 000, solid curves) which are in
perfect agreement with the solutions of the diffusion equation
(Gaussians with variance D¢, dotted curves).
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different times (Fig. 4b) indicate that we are in the pres-
ence of a normal Gaussian process. Note that dynamics
(1) can be rewritten in terms of a closed map on an inte-
ger lattice Z* with an explicit “time dependence,” namely,
rewrite also the variable x, in terms of the integer variable
qn € Z,

n(n + 1) (mod2) ,

(&)

and the map (1) becomes equivalent to an integer system

Xp =Xx9 + yon + B + aqy

Pui1l = pn + (_1)[x0+y0n+ﬁn(n+1)/2+aq,,—(1/2)]’ (6)

dn+1 = qn T Pn+i1,

with fixed initial conditions pg = go = 0. Here the origi-
nal initial conditions xg, yo enter as parameters.

We note the trivial but important fact that the triangle
map possesses no periodic orbits when the parameter 8
is irrational and o and B are incommensurable. There-
fore, the general argument of Ref. [5] using parabolic pe-
riodic orbits cannot be used to derive the 1/¢> decay of
Poincaré recurrence probabilities. It has been verified nu-
merically that the nonexistence of periodic orbits is indeed
responsible for exponential decay of Poincaré recurrence
probability: When we replaced irrational 8 with a crude
rational approximation we obtained a very clean crossover
from initial exponential decay exp(— ) to an asymptotic
power law P(t) = 1/t* due to the existence of (long) pe-
riodic orbits. Our map thus provides quite a pathological
example from the point of view of semiclassical periodic
orbit theory, hence we pose an interesting question: which
classical structure underpins the spectral fluctuations of the
quantization of the triangle map (1)? (See also Ref. [13]
for skew translations, & = 0.)

An interesting special case of the triangle map is
B = 0 which, as discussed above, describes the dynamics
of an elongated triangle (2). Here two cases should be
distinguished: (i) The parameter o (= 4u) is rational
a = 2k/l, with k,I € Z, then the dynamics is pseudo-
integrable and confined onto [-“valued” invariant curves
(yn — yo)l (mod2) = 0. (ii) The parameter « is irra-
tional, then the dynamics has been found to be ergodic.
However, ergodic properties turn out to be weak (see also
[14]) and the rate of ergodicity is very slow as opposed
to the general case 8 # 0: It has been shown that the
number of different values of coordinate y, taken by
a single orbit up to the discrete time 7, 0 =n < T,
grows extremely slowly, as o In7T. A similar property
has been found for triangular billiards in which one angle
is rationally related with 77, e.g., right triangles [5,15].
In addition, numerically computed correlation functions
of (1) with 8 = 0, such as {(cos(my;) cos(myo)), show
perhaps a tendency to decay as power laws but with a
small exponent o around 0.1. It is fair to say that, in
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this case, it is difficult to judge definitively, based on
numerical experiments, on the property of mixing even
though it cannot be excluded.

In this paper we have shown that a Gaussian diffusive
process and mixing behavior can take place in a simple area
preserving map without dynamical exponential instability.
One may argue that parabolic maps are nongeneric and
therefore irrelevant for the description of physical systems.
However, the results presented here show that a meaningful
statistical description is possible without the strong prop-
erty of exponential instability. Even if the model discussed
here is nongeneric in the context of classical systems, it
can describe the typical mechanism of quantum relaxation.
Therefore it can play an important role in understanding
and describing the quantum chaotic motion in analogy to
the one played by the Arnold cat map for classical systems.
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