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Proper Treatment of Symmetries and Excited States in a Computationally
Tractable Kohn-Sham Method
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A new Kohn-Sham (KS) formalism, the symmetrized generalized adiabatic connection KS formalism,
is introduced. It is applicable to ground as well as excited states and does not suffer from the symmetry
problems of the standard KS approach. In all cases a totally symmetric, non-spin-polarized KS Hamil-
tonian operator arises. Complete electronic spectra, including multiplet splittings, Rydberg series, and
x-ray and Auger data can be described. Results for the carbon atom and the carbon monoxide molecule
are presented.

PACS numbers: 31.15.Ew, 31.50.+w, 33.15.Bh, 33.20.–t
The treatment of symmetries in open-shell atoms or
molecules is a fundamental problem in the Kohn-Sham
(KS) as well as in the Hartree-Fock (HF) method [1,2].
In both methods the symmetry of an open-shell system is
broken, in general. This results in a KS or HF Hamiltonian
operator which has a lower symmetry than the real Ham-
iltonian operator of the open-shell atom or molecule. The
latter Hamiltonian operator is always rotationally symmet-
ric in spin space if relativistic effects (spin-orbit coupling)
are neglected and its symmetry in ordinary space is given
by the point group symmetry of the nuclei if the Born-
Oppenheimer approximation is made and no external fields
are present. On the other hand, the KS or HF Hamiltonian
operator, in general, is spin polarized, i.e., violates rota-
tional symmetry in spin space, and furthermore may ex-
hibit only a reduced symmetry in ordinary space.

This leads to the highly unsatisfying situation that three
electronic systems are associated with an open-shell atom
or molecule: (i) the real one, (ii) an often unclearly defined
model system used for the characterization and interpreta-
tion of the electronic structure, and (iii) the KS or the HF
model system which is actually calculated. As an example,
the carbon atom shall be considered. Its energetically low-
est states are the 3P, the 1D, and the 1S state of the configu-
ration �1s2, 2s2, 2p2�. In order to define the configuration
one invokes an independent particle model system with
one set of hydrogenlike orbitals with well-defined angular
quantum numbers. A KS or HF calculation for the 3P state,
the carbon ground state, yields two different sets of spin-up
and spin-down orbitals which furthermore, due to symme-
try breaking in ordinary space, belong to the point group
D`

h and no longer to the full rotational group. Thus the
KS or HF orbitals cannot be used to define the electronic
configuration of the carbon ground state and do not yield
many-electron wave functions with the proper symmetry.

In the KS formalism further problems arise. According
to a commonly adopted point of view the KS formalism
can be applied to the energetically lowest state of each
symmetry [3]. To that end KS wave functions with sym-
metries belonging to the full symmetry group of the atom
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or molecule are required. However, in general, for an atom
or molecule, the energetically lowest states of each sym-
metry are open shell states and thus, as just pointed out,
KS orbitals and wave functions do not belong to the full
symmetry group and therefore do not lead to KS wave
functions of the required symmetry. Even if this point is
ignored it is not possible to distinguish in conventional
KS calculations states whose spin density has the same
form in terms of KS orbitals, like, e.g., the 1S1

u state and
the 3S1

u state with magnetic spin quantum number zero of
the �1s11

g , 1s11
u � configuration of the hydrogen molecule.

Thus a proper treatment of states which are the energeti-
cally lowest of their symmetry but not the ground state has,
up to now, not been possible and one has to resort to ap-
proximate schemes [1] in these cases.

These problems are avoided in a symmetrized KS for-
malism introduced some time ago [4]. In this symmetrized
KS formalism the basic quantity is no longer the electron
density or the spin density, but the totally symmetric part
of the spin density which is rotationally invariant in spin
space and totally symmetric with respect to the symmetry
in ordinary space. The totally symmetric part r of an arbi-
trary spin density r is obtained by applying all symmetry
operations on it and by then averaging over the results.
If a spin density belongs to a state with a well-defined
symmetry characterized by the symmetry labels G, g (G
denotes the irreducible representation, g labels the sym-
metry partners in a higher dimensional representation) its
totally symmetric part is independent of g and can alter-
natively be obtained by averaging over the spin densities
of the symmetry partners of the state [4].

In the symmetrized KS formalism all quantities are func-
tionals not of the electron density or spin density but of
their totally symmetric part. The KS Hamiltonian opera-
tor in the symmetrized formalism always exhibits the full
symmetry of the system. However, because so far approxi-
mations for the required symmetry-dependent exchange-
correlation functionals have not been available it has not
yet been possible to apply the symmetrized KS formalism
in practice [5,6].
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The problem of a proper handling of symmetry also
occurs if higher excited open-shell states of an atom or
molecule are considered. Recently, a generalized adia-
batic connection KS (GAC-KS) formalism for the self-
consistent KS treatment of excited states was introduced
[7]. The GAC-KS formalism is no longer based on the
Hohenberg-Kohn theorem but on generalized adiabatic
connections associating a KS state with each state of the
real system. Because of the problem of a proper treatment
of symmetries the GAC-KS formalism so far could be
applied only to a few atomic test cases [7].

In this Letter, first, the symmetrized KS formalism of
Ref. [4] and the GAC-KS formalism of Ref. [7] are com-
bined to a symmetrized GAC-KS formalism. Then it is
demonstrated how the required potentials and energies can
be determined. This results in a generally applicable KS
method without symmetry problems, i.e., a KS method
which can be applied to any bound ground or excited state
of an atom or molecule and which leads in all cases to
non-spin-polarized KS Hamiltonian operators exhibiting
the full symmetry of the considered system. As an ex-
ample, excited states of the carbon atom and the carbon
monoxide molecule are considered.

For a start, symmetrized r-stationary wave functions
CG,g�r, n, a� are defined by the generalized constrained
search

stat
n,CG,g!r

�CG,gjT̂ 1 aV̂eejC
G,g� ! CG,g�r, n, a� . (1)

By T̂ and V̂ee the operators of the kinetic energy and the
electron-electron interaction are denoted, respectively; a

designates a coupling constant with values between zero
and one. The CG,g�r, n, a� are those wave functions of
symmetry �G, g� which yield a spin density with totally
symmetric part r and for which, additionally, the expec-
tation value �CG,g�r, n, a� jT̂ 1 aV̂eejC

G,g�r, n, a�� is
stationary with respect to variations dCG,g!r which leave
r unchanged. The parameter n labels all existing wave
functions CG,g�r, n, a� for a given r in some arbitrary
order. The symmetrized r-stationary wave functions
CG,g�r, n, a� with a values varying from zero to one
form the generalized adiabatic connection (GAC) n. The
wave function CG,g�r, n, a � 0� shall be designated as
KS wave function FG,g�r, n�. By

TG
s �r, n� � �FG,g�r, n� jT̂ jFG,g�r, n�� , (2)

U�r� �
Z

dr dr0
r�r�r�r0�
jr 2 r0j

, (3)

EG
x �r, n� � �FG,g�r, n� jV̂eejF

G,g�r, n�� 2 U�r� ,
(4)

EG
c �r, n� � �CG,g�r, n, 1� jT̂ 1 V̂eejC

G,g�r, n, 1��
2 �FG,g�r, n� jT̂ 1 V̂eejF

G,g�r, n�� , (5)

functionals of r for the noninteracting kinetic, the
Coulomb [8], the exchange [8], and the correlation energy,
4230
respectively, shall be defined. Note that the energy func-
tionals do not depend on g because the defining expec-
tation values are identical for wave functions differing
only by the value of g. Because for a given symmetry
�G, g� there exists a one-to-one relation between the
variables r, n and the KS wave functions FG,g�r, n�
the latter can be used as variables instead of the former
in order to represent energies by state-dependent func-
tionals Ts���FG,g�r, n���� � TG

s �r, n�, Ex���FG,g�r, n���� �
EG

x �r, n�, and Ec���FG,g�r, n���� � EG
c �r, n� which exhibit

an explicit dependence on KS states and only implicitly
depend on r and n.

From a generalization of the arguments of Ref. [7] it
follows that each eigenstate C

G,g
i of a given real elec-

tron system is a symmetrized r-stationary wave function
CG,g�ri , n, a � 1� with a KS state F

G,g
j � CG,g�rj �

ri , n, a � 0� associated to it via the GAC n. Here, ri �
rj is the totally symmetric part of the spin densities of

C
G,g
i and, by definition, also of F

G,g
j . Each KS state F

G,g
j

is the jth eigenstate of a KS equation

���T̂ 1 ŷs�G, rj , n����FG,g
j � Es,jF

G,g
j , (6)

ŷs�G, rj , n� � ŷ 1 û�rj� 1 ŷx�G, rj , n�
1 ŷc�G, rj , n� . (7)

In Eqs. (6) and (7) ŷs�G, rj , n� denotes the operator cor-
responding to the KS potential ys��G, rj , n�; r� and ŷ the
operator corresponding to the external potential y�r� usu-
ally formed by the electrostatic potential of the nuclei. The
Coulomb, exchange, and correlation potentials u��rj�; r�,
yx��G, rj , n�; r�, and yc��G, rj , n�; r�, respectively, gen-
erating the operators û�rj�, ŷx�G, rj , n�, and ŷc�G, rj , n�
in Eq. (7), are given by the functional derivatives:

u��rj�; r� �
Z

dr
rj�r0�
jr 2 r0j

, (8)

yx��G, rj , n�; r� �
dEG

x �r, n�
dr�r�

Ç
r�r��rj �r�

, (9)

yc��G, rj , n�; r� �
dEG

c �r, n�
dr�r�

Ç
r�r��rj �r�

. (10)

Functional derivatives with respect to totally symmetric
quantities, like r�r� [or ys�r� later on], always are to-
tally symmetric functions of r if irrelevant, undefined non-
totally-symmetric contributions are set to zero as in this
work (see Sec. IIB of Ref. [4]). Functional derivatives
with respect to r�r� are defined only up to the addition
of a constant. Here this constant shall be chosen in such a
way that all functional derivatives vanish for r ! `.

In the treatment of an atom or molecule in the sym-
metrized GAC-KS formalism first eigenstates C

G,g
i are

chosen by specifying the configuration and symmetry of
the corresponding KS wave functions F

G,g
j . Then for

each chosen eigenstate state C
G,g
i the corresponding KS
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equation (6) has to be solved self-consistently to obtain
the associated KS wave function F

G,g
j and the totally

symmetric contribution ri � rj of the spin density.
The many-particle KS equation (6) decouples in corre-
sponding one-particle KS equations for the KS orbitals
fL,l

p �G, rj , n� (two-dimensional spinors) building the KS

wave function F
G,g
j and their eigenvalues ´L,l

p �G, rj , n�.
By �L, l� the symmetry of the KS orbitals is denoted.
In a second step then the energy EG

i of the state C
G,g
i

is obtained as a sum of the corresponding state-
dependent energy functionals EG

i � Ts�FG,g
j � 1 U�rj� 1

Ex�FG,g
j � 1 Ec�FG,g

j � 1
R

dr y�r�rj�r�.
Having established the symmetrized GAC-KS formal-

ism the remaining task is to devise a method for its use in
practice. This Letter introduces a basis set method which
employs Gaussian- or Slater-type basis sets and is gen-
erally applicable, i.e., to arbitrary atoms and molecules.
The crucial step is the evaluation of the exchange and
correlation energies and potentials from state-dependent
functionals Ex�FG,g

j � and Ec�FG,g
j �. The handling of

state-dependent functionals in the symmetrized GAC-KS
formalism is demonstrated by treating the exchange en-
ergy and potential exactly. However, the approach also
can be applied to (approximate) state-dependent correla-
tion functionals. Because, at present, such state-dependent
correlation functionals are not available, correlation is, in
this work, either neglected (exact exchange-only approach
labeled EXX) or treated by substituting rj�r� into approxi-
mate correlation functionals from the standard KS formal-
ism. In the approach labeled EXX-LDA the local density
approximation [9] for correlation is used, and in the ap-
proach labeled EXX-PBE (Perdew-Burke-Ernzerhof) the
correlation functional according to Ref. [10].

In order to represent the energy E
G,g
i in terms of the

KS orbitals fL,l
p �G, rj , n� (for notational simplicity, the

argument �G, rj , n� will be suppressed from now on),
the average density matrix rj�r, r0� is defined by

rj�r, r0� �
X

L,l,p

fj�L, p�fL,l
p �r�fL,ly

p �r0� . (11)

In Eq. (11), fj�L, p� is the average fractional occupa-
tion of the KS orbitals according to the configuration.
The average density matrix then yields rj�r� � rj�r, r�,
which subsequently yields the Coulomb energy U�rj� via
Eq. (3), the energy contribution

R
dr y�r�rj�r�, and, in

the EXX-LDA and EXX-PBE procedures, the approxi-
mate correlation energy. The noninteracting kinetic energy
is given by Ts�FG,g

j � �
P

L,l,p fj�L, p� �fL,l
p jT̂ jfL,l

p � in
terms of the KS orbitals.

For the exchange energy, orbital-dependent expressions
result from evaluating Eqs. (4). In the example of the
carbon atom the following energy quantities are defined:
Y �conf.� �
1
2

Z
dr dr0

3
rj�r, r0�rj�r0, r�

jr 2 r0j
,

U�p, q� �
1
2

X
l,l0

Z
dr dr0

3
fL,ly

p �r�fL,l
p �r�fL0,l0y

q �r0�fL0,l0

q �r0�
jr 2 r0j

,

Y �p, q� �
1
2

X
l,l0

Z
dr dr0

3
fL,ly

p �r�fL0 ,l0

q �r�fL0,l0y
q �r0�fL,l

p �r0�
jr 2 r0j

.

For the carbon 3P, 1D, and 1S states of the configu-
ration �1s2, 2s2, 2p2� the exchange energy is given by
Y �1s2, 2s2, 2p2� 2 �1�36�U�2p, 2p� 2 �1�18�Y �2p, 2p�,
Y �1s2, 2s2, 2p2� 2 �11�180�U�2p, 2p� 1 �13�90�Y �2p,
2p�, and Y �1s2, 2s2, 2p2� 2 �1�9�U�2p, 2p� 1 �4�9� 3

Y �2p, 2p�, respectively [11].
The Coulomb potential is given by Eq. (8), and the LDA

or PBE correlation potentials by simply substituting rj�r�
in the corresponding functionals for the correlation poten-
tial. For the exchange potential, the EXX equationZ

dr0 Xs�r, r0�yx��G, rj , n�; r0� �
dEx�FG,g

j �
dys�r�

(12)

can be derived by generalizing the arguments of Ref. [12].
The response function Xs of the KS system describing
changes of the totally symmetric part of the spin density
of F

G,g
j due to changes of the KS potential ys is given

by perturbation theory in terms of the KS orbitals. The
functional derviative dEx�FG,g

j ��dys�r� on the right-hand

side of Eq. (12) is accessible because Ex�FG,g
j � is known

in terms of the KS orbitals and the functional derivative
of the KS orbitals with respect to ys�r� is again given by
perturbation theory.

In order to solve the EXX equation (12), follow-
ing Ref. [12], an exchange charge density rx�r� �
�21�4p�=2yx�r� is introduced. It yields the exchange
potential according to yx�r� �

R
dr0 rx�r0��jr 2 r0j

[12,13]. If the latter expression for yx�r� is inserted into
Eq. (12), then an EXX equation for rx�r� emerges. The
exchange charge density rx�r� and its EXX equation
is then expanded in an auxiliary basis set of Slater- or
Gaussian-type functions which is required in addition to
the basis set for the representation of the KS orbitals.
The EXX equation for rx�r� then turns into a matrix
equation for the expansion coefficients rx�r�. In this work
large uncontracted Gaussian basis sets are employed.
The occurring matrix elements are calculated with the
programs PARAGAUSS [14] and GAMESS [15].

For carbon the configurations �1s2, 2s2, 2p2� with
states 3P, 1D, and 1S, �1s2, 2s1, 2p3� with states 5S,
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TABLE I. Carbon excitation energies (eV).

Config. Sym. EXX EXX-LDA EXX-PBE Expt.a

2s2, 2p2 1D 1.54 1.57 1.57 1.26
2s2, 2p2 1S 3.76 3.85 3.85 2.68
2s1, 2p3 5S 2.42 2.40 2.47 4.18
2s1, 2p3 3D 7.98 8.05 8.10 7.94
2s1, 2p3 3P 9.53 9.63 9.67 9.33

2s2, 2p1, 3s1 3P 7.27 7.96 7.81 7.48
2s2, 2p1, 3s1 1P 7.49 8.20 8.02 7.68
2s2, 2p1, 4s1 3P 9.25 10.19 9.94 9.68
2s2, 2p1, 4s1 1P 9.31 10.26 10.00 9.71
2s2, 2p1, 5s1 3P 9.92 10.99 10.67 10.38
2s2, 2p1, 5s1 1P 9.94 11.01 10.69 10.40
2s2, 2p1, 6s1 3P 10.23 11.41 11.04 10.70
2s2, 2p1, 6s1 1P 10.24 11.43 11.05 10.71
2s2, 2p1, 7s1 3P 10.39 11.67 11.23 10.87
2s2, 2p1, 7s1 1P 10.40 11.67 11.24 10.88

aSee Ref. [16].

3D, and 3P, and the Rydberg series of configuration
�1s2, 2s2, 2p1, ns1� for 3 # n # 7 with states of sym-
metry 3P and 1P are considered. Carbon monoxide
(CO) belongs to the point group C`y ; the involved KS
orbitals either belong to the irreducible representation
S1 (s orbitals) or P (p orbitals, twofold degenerate
with respect to symmetry in ordinary space). Here
the configuration �1s2, 2s2, 3s2, 4s2, 1p4, 5s2� lead-
ing to the 1S1 ground state and the configurations
�1s2, 2s2, 3s2, 4s2, 1p4, 5s1, 2p1� with states 3P and
1P and �1s2, 2s2, 3s2, 4s2, 1p3, 5s2, 2p1� with states
3S1, 3D, 3S2, 1S2, and 1D are treated.

The EXX exitation energies for carbon listed in
Table I agree within a few tenths of an eV with the
experimental values. Exceptions are the excitations
into the �1s2, 2s2, 2p2� 1S and �1s2, 2s1, 2p3� 5S states.
In Table II excitation energies for CO (bond distance
1.128 Å) are displayed. Excitations into the two states
of configuration �1s2, 2s2, 3s2, 4s2, 1p4, 5s1, 2p1�
are quite well described by the GAC-KS methods.
EXX excitation energies for the states of configuration
�1s2, 2s2, 3s2, 4s2, 1p4, 5s1, 2p1� are consistently too
low by �1.5 eV; the corresponding multiplet splitting,
however, is obtained with a good accuracy of �0.1 eV.
The deviations between EXX and experimental data have
to be attributed to correlation effects which are neglected
in the exchange-only EXX approach. The inclusion of
correlation on the LDA or PBE level does not lead to
systematic improvements because the employed LDA
and PBE functionals (i) are not state dependent and not
designed for excited states and (ii) rely on error cancel-
lations with approximate exchange functionals which are
not present if exchange is treated exactly [12].

By calculating highly excited states with core holes,
data describing x-ray or Auger spectroscopy can be
obtained with the symmetrized GAC-KS approach. For
example, the EXX binding energy of the carbon 1s
4232
TABLE II. CO excitation energies (eV).

Config. Sym. EXX EXX-LDA EXX-PBE Expt.a

1p4, 5s1, 2p1 3P 5.90 5.91 5.86 6.32
1p4, 5s1, 2p1 1P 8.98 9.06 9.01 8.51
1p3, 5s2, 2p1 3

S1 7.07 7.12 7.21 8.51
1p3, 5s2, 2p1 3D 7.80 7.85 7.95 9.36
1p3, 5s2, 2p1 3

S2 8.49 8.55 8.65 9.88
1p3, 5s2, 2p1 1

S2 8.49 8.55 8.65 9.88
1p3, 5s2, 2p1 1D 8.77 8.82 8.93 10.23

aSee Ref. [17].

electron calculated as the difference between the energies
of the �1s1, 2s2, 2p2� 4P and �1s2, 2s2, 2p2� 3P states with
295.2 eV excellently agrees with the experimental value
of 296.9 eV [18].

More important than the details of the comparison of the
calculated to the experimental excitation energies is the
demonstration that the symmetrized GAC-KS formalism
is applicable in practice to a wide range of atomic and
molecular states, including highly excited Rydberg states
and states with core holes.

[1] T. Ziegler, A. Rauk, and E. J. Baerends, Theor. Chim. Acta
43, 261 (1977).

[2] B. I. Dunlap, in Density Funtional Methods in Chemistry,
edited by J. K. Labanowski and J. W. Andzelm (Springer,
Heidelberg, 1991), and reference therein.

[3] O. Gunnarsson and B. I. Lundqvist, Phys. Rev. B 13, 4274
(1976).

[4] A. Görling, Phys. Rev. A 47, 2783 (1993).
[5] Recently, the symmetrized KS procedure was rederived

within an ensemble formalism and, in an approximate
form, applied to atoms [6]. However, the approach of
Ref. [6] relies on the presence of spherical symmetry and
thus is restricted to atoms.

[6] Á. Nagy, J. Phys. B 32, 2841 (1999).
[7] A. Görling, Phys. Rev. A 59, 3359 (1999).
[8] The partitioning of Coulomb and exchange energies differs

slightly from that of Ref. [4] in order to obtain a Coulomb
energy independent of the labels G and n.

[9] S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58,
1200 (1980).

[10] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett.
77, 3865 (1996); 78, 1396(E) (1997).

[11] J. C. Slater, Quantum Theory of Atomic Structure
(McGraw-Hill, New York, 1969), Vol. II.

[12] A. Görling, Phys. Rev. Lett. 83, 5459 (1999).
[13] S. Liu, P. W. Ayers, and R. G. Parr, J. Chem. Phys. 111,

6197 (1999).
[14] PARAGAUSS 2.0, N. Rösch et al., Technische Universität

München.
[15] M. W. Schmidt et al., J. Comput. Chem. 14, 1347 (1993).
[16] NIST atomic spectra database, version 2.0.
[17] E. S. Nielsen, P. Jørgensen, and J. Oddershede, J. Chem.

Phys. 73, 6238 (1980).
[18] K. D. Sevier, At. Data Nucl. Data Tables 24, 323 (1979).


