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Bertrand, Bonn, and Meunier Reply: In a recent
Letter [1], we studied the wetting of hexane on brine and
reported the following: (i) a sequence of two wetting tran-
sitions, the first one, at a temperature Tw,1, being first order
and the second one, at Tw,c being critical; (ii) that the
effect of the addition of sodium chloride (NaCl) on the
two transition temperatures is a shift towards lower tem-
perature that is the same for both transitions. Tw,c being
controlled by the Hamaker constant W [1], we concluded
that Tw,1 appeared to also be connected to W .

Indekeu comments on the generality of this last conclu-
sion [2]. We show here that the connection between W and
Tw,1 can, however, be understood theoretically. W repre-
sents the net effect of the intermolecular van der Waals
interactions as an effective interaction between the two in-
terfaces bounding the wetting film. The van der Waals
interactions intervene in two ways in the Cahn-Landau the-
ory used by Indekeu [2]. First, the bulk equation of state
of the hexane [3] takes into account the cohesive van der
Waals interactions between the adsorbate molecules. Sec-
ond, the adhesive interactions between the substrate and
the adsorbate are included in a surface contact energy that
is obtained from surface pressure measurements of alkanes
on water and consequently contains both short-range and
van der Waals interactions [3].

The difference in work of adhesion per unit area Ds

between the wetting of hexane on pure water and the wet-
ting of hexane on brine can be calculated directly from
the long-range van der Waals interactions by considering
the existence, near the interface between brine and hex-
ane, of a layer of water depleted of NaCl [4]. Similar to
the calculation of the Hamaker constant, we integrate the
van der Waals interactions now over a four-layered struc-
ture (air/hexane/depleted water/brine), leading to [5]
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where D0 is a function of the static dielectric constants,
and D of the refractive indices of the four media [5]; kB

is Boltzmann’s constant, h̄ is Planck’s constant, and vUV
is a typical absorption frequency. Note that apart from the
depletion layer thickness the same parameters determine
the Hamaker constant. The depletion layer thickness d

was calculated by Onsager and Samaras [4] within Debye-
Hückel theory to be of the order of 2 Å for the NaCl con-
centrations considered here. Treating the depleted layer as
a slab of this thickness, using a Cahn-Landau phase por-
trait, we can convert Ds directly into a shift in first-order
wetting transition temperature [3]. Figure 1 shows the ex-
cellent agreement between the measured and the calculated
first-order wetting temperatures. If we also take into ac-
count the dependence of d on the salt concentration, the
agreement is still very good, at least for low salinities. That
the agreement deteriorates for higher salinities is possibly
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FIG. 1. Experimental first-order (circles) and critical (dia-
monds) wetting transition temperatures [1]. The solid line
shows the calculated Tw,c from W ; the dotted and the dashed
lines show our calculations for Tw,1 with and without taking
into account the dependence of d on salinity, respectively.

due to a breakdown of Debye-Hückel theory for high elec-
trolyte concentrations [5].

As this calculation involves only the long-range van der
Waals forces, we have thus demonstrated a direct connec-
tion between W and Tw,1. This remains an important issue,
since first-order wetting temperatures are notoriously hard
to predict, whereas a Hamaker constant is calculated
relatively easily. More generally, because the Cahn-
Landau theory includes the long-range van der Waals
forces in both the cohesive and the adhesive contributions
to the surface free energy, the Hamaker constant and the
first-order wetting temperature are coupled.
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