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Ferromagnetism and Colossal Magnetoresistance from Phase Competition
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We report a multicomponent theory for the coexistence of charge ordering (CO), and antiferromagnetic
(AFM) and ferromagnetic (FM) spin ordering. This kind of state is invoked for manganites by Moreo
et al., Science 283, 2034 (1999) and observed in recent experiments. We show that doping an AFM
or CO state always generates a FM component. FM, AFM, and CO necessarily coexist in a particle-
hole asymmetric system. Melting of large AFM-CO orders by small magnetic fields and colossal mag-
netoresistance (CMR) arise whenever the CO and AFM order parameters have similar magnitude and
momentum structure. Hole doping favors FM metallic states while electron doping favors AFM-CO
states, as in CMR manganites.

PACS numbers: 75.10.Lp, 75.30.Vn
The perovskite manganites �La, Pr�12x�Ca, Sr, Ba�x-
MnO3, in the doping region x � 0.2 0.4 exhibit a
transition to a ferromagnetic (FM) ground state which is
accompanied by a large drop of the resistivity. This tran-
sition can be tuned by a magnetic field producing negative
“colossal magnetoresistance” (CMR) [1]. Ferromagnetism
in these materials is usually attributed to the double ex-
change mechanism [2,3], in which the lattice degrees of
freedom [4,5] might also be involved. However, the CMR
phenomenon could be more general since it has also been
observed in pyrochlore manganites [6], where double
exchange and Jahn-Teller effects on the transport can be
safely excluded [7,8]. It has been suggested that CMR is
a dynamic phenomenon and it was studied in the context
of dynamic mean-field theories [9]. In general, polaronic
models enter a similar line of ideas [10]. More recently,
Moreo et al. [11] have proposed a phase separation (PS)
scenario suggesting that instead the space (momentum)
degrees of freedom play the crucial role. In both ap-
proaches, a proper explanation of CMR is still lacking.

One of the most puzzling aspects of perovskite mangan-
ites is that the hole doped �x , 0.5� and the electron doped
�x . 0.5� compounds behave very differently. In the inter-
mediate doping region x � 0.5 there is a kind of boundary
between the hole doped regime, where the metallic fer-
romagnetic phases and CMR take place, and the electron
doped regime where essentially there are phases of coexist-
ing charge and spin ordering. Understanding the physics in
this intermediate region x � 0.5 6 ´ appears crucial, and
much of the recent experimental activity has focused on
it [12–19] reporting some additional puzzling facts. Ap-
parently a small part of the carriers remains metallic in
the antiferromagnetic-charge ordering (AFM-CO) regime,
and even in the hole doped regime the carriers are sepa-
rated into a part that is metallic and a part that is still charge
ordered [18,20–22]. More puzzling is the fact that the in-
sulating AFM-CO state near the half-filling boundary can
be melt by a magnetic field of a few teslas despite the fact
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that the CO gap is very large (�0.5 eV) and would corre-
spond to several hundreds of teslas [12,13,18].

Numerical calculations on realistic microscopic models
for manganites have reported a generic tendency for PS
[23] which by including extended Coulomb interactions
[24] and disorder [25] turns into charge inhomogeneous
states similar to the experimental ones. These results mo-
tivated the PS scenario of Moreo et al. [11]. Here we de-
velop a momentum space approach that may lead to the
same mixed-phase ideas of Moreo et al. but from a differ-
ent and more general perspective. We report for the first
time a general multicomponent mean-field theory in which
the AFM, CO, and FM order parameters are considered
self-consistently on the same footing. Other mean-field
theories have considered the above orders but only one by
one and therefore cannot account for their coexistence to
which our novel results are due. Our approach provides a
natural understanding of the puzzling behavior in the inter-
mediate doping region of perovskite manganites and helps
in understanding the underlying physics of CMR and itin-
erant FM.

We propose a general mean-field Hamiltonian describ-
ing the coexistence of CO, AFM, and FM orders in the
presence of a uniform magnetic field.
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where a, b are spin indices, Wk, Mk, and Fk are the CO,
AFM, and FM order parameters, respectively, n are the
polarizations of the AFM and FM orders considered here
parallel without influence on the generality of the results,
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jk is the electronic dispersion, and mBH is the Zeeman
contribution of the applied magnetic field. This Hamilton-
ian is derived in analogy with other mean-field Hamilton-
ians such as the BCS mean-field Hamiltonian for the
superconducting ordering. The above Hamiltonian ac-
counts for the physics resulting from the coexistence of
the AFM, CO, and FM orders irrespective of the exact
microscopic mechanism responsible for these orderings,
similarly as the BCS Hamiltonian accounts for the physics
related to the superconducting ordering irrespective of the
exact pairing mechanism. Our approach applies to any
itinerant system in which the above orders are present
and therefore to manganites as well.
To study all order phenomena on the same footing, we
must work in a multicomponent spinor space [26]. We use
an eight component spinor formalism with a basis defined
by the following tensor products: bt � bs ≠ �bI ≠ bI�,
br � bI ≠ �bs ≠ bI�, and bs � bI ≠ �bI ≠ bs�, where bs
are the usual Pauli matrices and bI the identity matrix.
We define 2gk � jk 2 jk1Q and 2dk � jk 1 jk1Q.
When dk � 0 there is particle-hole symmetry or per-
fect nesting at the wave vector Q. With the above
notations and considering all order parameters real we
have obtained the one particle thermal Green’s function
corresponding to our Hamiltonian. It can be written as
follows:
bGk,n � 2�ivnbt2 1 igkbt1 br3 1 dkbt2 br3 1 iWkbt3 br3 1 iMkbt3 br3 bs3 1 �Fk 1 mBH�bt2 br3 bs3�
3 �Ak,nbt2 1 i2gkdkbt1 1 i�2Wkdk 1 2Mk�Fk 1 mBH��bt3 1 �2WkMk 1 2�Fk 1 mBH�dk�bt2 bs3

1 i�2Mkdk 1 2Wk�Fk 1 mBH��bt3 bs3 1 i2gk�Fk 1 mBH�bt1 bs3� �Bk,n 2 Gk,n bs3�Dk,n , (2)
where vn � �2n 1 1�pT are the Matsubara frequencies
for fermions. To condense the formal expressions, the
following functionals have been defined:
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We obtain four different quasiparticle branches E66�k�
defined as follows:
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Wk, Mk, and Fk obey self-consistency relations (e.g.,
Wk � T

P
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P
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bGk0,n�, etc.). The require-
ment of self-consistency leads to a system of coupled
equations:
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where

fk,n � Ak,nBk,n 2 2�WkMk 1 dk�Fk 1 mBH�� , (12)

gk,n � 2�WkMk 1 dk�Fk 1 mBH��Bk,n 2 Ak,nGk,n ,
(13)
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yk,n � 2g2
k��Fk 1 mBH�Bk,n 2 dkGk,n� . (16)

We look upon the system of coupled equations (9)–(11)
as similar to the BCS gap equation in superconductivity.
The kernels Vkk0 in the different CO, AFM, or FM chan-
nels are input parameters, as the pairing potential is in BCS
theory. Inhomogeneous states as in manganites imply mo-
mentum dependent order parameters and kernels. The FM
and AFM-CO orders that will result from Eqs. (9)–(11)
will in general occupy different regions in momentum
(real) space. This is illustrated with a simplified example
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in Fig. 1 where it is reported the solution on a square two
dimensional tight binding system with nearest neighbors
(NN) and next nearest neighbors (NNN) hopping terms
(corresponding, respectively, to gk and dk). The FM com-
ponent develops near �0, p� and symmetry related areas
where the NNN term creates deviation from nesting desta-
bilizing the AFM component [here Q � �p, p�]. In real
space, this kind of solution is similar to charge inhomo-
geneous solutions obtained by Moreo et al. (see Fig. 2B
in [11]) on microscopic models with extended Coulomb
terms and is unrelated to the spin canted state which is
homogeneous and has the FM and AFM polarizations or-
thogonal unlike in the present formalism. To explain the
coexistence of giant clusters and obtain a realistic fit of
recent experiments [20,21], Moreo et al. have shown that
the inclusion of disorder may be necessary [25]. Disor-
der is not explicitly included in our formalism, however
the arguments that follow are valid whatever the momen-
tum (space) structure of the order parameters and there-
fore should normally be valid in the presence of disorder
as well.

A solvable microscopic model could in principle pro-
vide the various kernels Vkk0 for a given material system.
Then we should solve a system of Eqs. (9)–(11) for each
Q in the Brillouin zone. The solution that minimizes the
free energy characterized by a wave vector Q and a set
of order parameters Wk, Mk, and Fk will be the ground
state of the system to be compared with the experiments.
It results from the following analysis that this is the cor-
rect procedure for the study of the above orders in any
itinerant particle-hole asymmetric system because in such
systems the coexistence and competition of these orders
are in practice shown to be unavoidable. In this Letter we
focus on qualitative arguments which are generally valid
irrespective of the microscopic model.

We first note that if dk � 0, then Wk � 0 is a triv-
ial solution of (9), Mk � 0 a trivial solution of (10), and

FIG. 1. Example of inhomogeneous state in our approach. The
FM (black) and AFM (grey) order parameters over the first
Brillouin zone of a 2D square tight binding system with NN and
NNN hopping terms. For simplicity Eq. (9) has been ignored
and a choice of potentials with maxima at �p, p� and �0, p�
is made.
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Fk � 0 a trivial solution of (11). Therefore, any combi-
nation of the above orders is possible. Particle-hole asym-
metry induced by dk fi 0 implies unexpected constraints.
In fact, let us start by considering Fk � 0 � mBH. In
both particle-hole symmetric (dk � 0) and particle-hole
asymmetric (dk fi 0) cases, the trivial solutions Wk � 0
and Mk � 0 are independently valid in (9) and (10), re-
spectively. The situation is already different if we apply
a uniform magnetic field (mBH fi 0). For dk � 0 the
trivial solutions Wk � 0 and Mk � 0 are still true inde-
pendently so that we may still have CO or AFM alone at
perfect nesting. However, when we dope the system hav-
ing dk fi 0, the trivial solutions Wk � 0 and Mk � 0 are
no longer true independently. We must either have both
Wk, Mk � 0 or both Wk, Mk fi 0, provided that none of
VCO

kk0 and VAFM
kk0 is identically zero which is the most natu-

ral case for a real material system. Applying a uniform
magnetic field in a doped CO or AFM system we arrive at
the coexistence of commensurate charge and spin density
orders.

Let us now take into account the possibility for FM
ordering by considering also Eq. (11). A similar analysis
can show that if Wk fi 0 or Mk fi 0 and there is no
particle-hole symmetry (dk fi 0), then Fk � 0 is not a
trivial solution of (10). Therefore Wk, Mk, and Fk nec-
essarily coexist in a particle-hole asymmetric system. By
doping the CO or AFM system we necessarily generate a
ferromagnetic component. Given the generic validity of
our mean-field approach, this result may improve our un-
derstanding of FM in a variety of materials like MnSi [27],
TbNi2B2C [28], or some doped fullerenes TDAE-C60 [29]
where signs of coexistence and competition of FM with
AFM-CO orders are evident. Note that this result can
be viewed as a formal generalization of the “excitonic”
FM picture, invoked recently for some lightly doped
hexaborides [30].

We focus now on the behavior of perovskite mangan-
ites. In La12xCaxMnO3, particle-hole symmetry (dk � 0)
corresponds to x � 0.5. The metallic FM state is in
competition with the insulating AFM-CO state. They both
occupy a portion of the carriers at finite doping. If the
AFM-CO state is melt, its portion of carriers is liberated
and the resistivity drops. The AFM-CO state will melt
when one of the quasiparticle poles given in Eqs. (7)
and (8) will go to zero (will soften), in analogy with the
estimate of the critical in-plane fields for the melting of
superconductivity in films [31]. When Wk � Mk, small
magnetic fields are sufficient to melt the AFM-CO state
even if Wk and Mk are very large. In fact, CO and AFM
interfere to produce quasiparticle poles with Wk 1 Mk
and Wk 2 Mk, the latter being the relevant ones since
these are likely to become zero. We therefore con-
sider the Wk 2 Mk terms in (7) and (8), namely,
E12�k� and E22�k�. We distinguish here two cases:
In the case of hole doping (dk , 0), in E12�k� �p

g2
k 1 �Wk 2 Mk�2 1 dk 2 Fk 2 mBH, the doping

dk, the FM order Fk, and the magnetic field mBH all
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have a negative sign and cooperatively compete with
the AFM-CO order, making probable the softening of
the E12�k� branch and therefore the melting of the
AFM-CO order. On the other hand, in the case of electron
doping (dk . 0), in both relevant quasiparticle branches
E12�k� and E22�k�, dk has its sign opposite to that
of Fk and mBH. Electron doping does not cooperate
with FM against the AFM-CO state but instead electron
doping contributes to preventing the melting of the
AFM-CO order. This explains the systematic differ-
ence between electron doped and hole doped perovskite
manganites.

Near half filling, AFM-CO states and FM coexist since
even a small nonzero value of dk generates a FM compo-
nent. Near half filling (x � 0.5) the dominating AFM-CO
state can be melt by a small magnetic field because the
critical temperatures of CO and AFM ordering coincide
in the phase diagram of perovskite manganites (see, for
example, Fig. 2 in [5] or Fig. 5 in [11]) indicating that in-
deed Wk and Mk have similar magnitude. Since they also
have the same momentum structure (they occupy the same
regions in real space) the E12�k� pole can easily go to
zero by a small magnetic field melting the AFM-CO state.
When we dope slightly with electrons, the critical field for
the melting of AFM-CO increases [18] because electron
doping acts against the melting.

The CMR phenomenon can be understood in part
by considering the relevant pole E12�k�. At high hole
doping, the FM order parameter Fk can be sufficiently
large so that, as it develops by lowering the temperature,
at T � TC , the pole E12�k� softens (goes to zero)
and the AFM-CO order is melt, liberating its portion
of carriers and leading to the large enhancement of
the conductivity. The application of a magnetic field
enhances the FM order parameter from Fk to Fk 1 mBH
and correspondingly the melting critical temperature
from TC to TC 1 dTC, producing negative CMR in the
temperature range TC , T , TC 1 dTC. In the above
mechanism, CMR is due to the increase of the number
of carriers due to a transfer from the AFM-CO state
to the coexisting FM state and not to a decrease in the
scattering.

In conclusion, general symmetry arguments associated
with the coexistence of CO, AFM, and FM orders ex-
plain the particle-hole asymmetry in the phase diagram
of perovskite manganites and associate the melting of the
AFM-CO order and CMR with the similarity in magni-
tude and momentum structure of CO and AFM order pa-
rameters. Itinerant FM should normally be analyzed in the
context of coexistence and competition with AFM and CO
orders as illustrated above.
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