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Meissner-London Currents in Superconductors with Rectangular Cross Section
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Exact analytic solutions are presented for the magnetic moment and screening currents in the Meissner
state of superconductor strips with rectangular cross section in a perpendicular magnetic field and/or with
transport current. The extension to finite London penetration is achieved by an elegant numerical method
which works also for disks. The surface current in the specimen corners diverges as l21�3 where l is
the distance from the corner. This enhancement reduces the barrier for vortex penetration and should
increase the nonlinear Meissner effect in d-wave superconductors.

PACS numbers: 74.60.Ec, 74.55.+h, 74.60.Ge
The main feature of superconductors is that they expel
weak magnetic fields H from their interior. This Meissner
effect was described quantitatively by the London broth-
ers, who showed that H penetrates exponentially to the
London depth l [1], and by Ginzburg and Landau and by
Pippard, who introduced the superconducting coherence
length j. In extreme type-II superconductors with l ¿ j,
the correction caused by finite j to the Meissner-London
state usually may be disregarded, but now the penetration
of magnetic flux in the form of Abrikosov vortices has to
be considered. Vortex penetration is governed by surface
barriers which increase with decreasing j. Both the micro-
scopic Bean-Livingston barrier [2,3] and the macroscopic
geometric barrier [4–7] depend on the surface screening
currents flowing in the Meissner-London state. These cur-
rents crucially depend on the specimen shape and on the
orientation of the applied magnetic field H. The screen-
ing current is particularly large near sharp edges, where
it causes a reduction of the field of first penetration of
vortices and possibly increases the nonlinear Meissner ef-
fect in d-wave superconductors [8,9]. Knowledge of the
Meissner-London state of thin platelets is also required for
a correct evaluation of certain precision measurements of
the London penetration depth l [9].

In spite of its fundamental nature, exact solutions of
London theory exist only for the trivial (and less important
for experiments) longitudinal geometry of infinite slabs
and cylinders in parallel H, and for the sphere and infinite
cylinder in arbitrarily oriented H [1]. Even for the ideal
Meissner state, i.e., the limit l ! 0, the only nontrivial
solution we know of is the ellipsoid [10,11] and strips
with elliptic [12] and oval [13] cross sections. In general,
when l is much smaller than the smallest extension of the
superconductor, the surface screening current is J � jHkj
where Hk is the component of H�r� at and parallel to the
surface, and its density is approximately

j � � J�l� exp�2d�l� , (1)
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where d is the distance from the surface.
In the present paper we first give an exact solution for the

surface current and magnetic moment in the ideal Meiss-
ner state (l � 0) of an infinitely long strip with rectan-
gular cross section in a perpendicular magnetic field H or
with transport current I . We then show how the Meissner-
London state of this strip (and of circular disks) can be
computed for arbitrary l. In all these cases the solu-
tions for H . 0, I � 0 and H � 0, I . 0 may be su-
perimposed linearly to give the general (less symmetric)
result for simultaneously applied H and I. The rectangu-
lar cross section of the strip fills the area 2a # x # a,
2b # y # b; the currents flow along the strip kz, and H
is applied along y; see inset in Fig. 1. The result for arbi-
trary orientation of H is obtained by linear superposition
of the solutions with Hky and Hkx.
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FIG. 1. The Meissner surface currents J�x, b� and J�a, y�,
Eqs. (4) and (5), in strips with various aspect ratios b�a; see
inset. The dashed line gives the thin strip limit, Eq. (12).
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The surface currents of an ideally diamagnetic rectan-
gular strip in a perpendicular field Hky or with transport
current Ikz can be calculated by conformal mapping of the
half plane on a rectangle. We give here the main results
starting with the case H . 0, I � 0; details will be pub-
lished elsewhere. Defining the universal function

f�s, m� � ms
Z 1

0

p
1 2 s2t2

p
1 2 ms2t2

dt , (2)

[f is the sum of two incomplete elliptic integrals,
f�s, m� � E�u, k� 2 �1 2 k2�F�u, k�, s � sinu, m �
k2, 0 # s # 1, 0 # m # 1 (see textbooks)] we may
write the screening currents and the magnetic moment in
parametric form, with curve parameters s and m. First
we find m�b�a� from
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and then the currents as functions of x�s� and y�s�:
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The (negative) magnetic moment of the strip per unit length
along z is

2M
pa2H

�
1 2 m

� f�1, 1 2 m��2 , (6)

with m � m�b�a� from Eq. (3). These exact results are
shown in Figs. 1 and 2.

Some useful approximations and limiting cases are as
follows. For all aspect ratios 0 , b�a , ` one has
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FIG. 2. Magnetic moment of Meissner strips versus the aspect
ratio b�a, Eq. (6) (solid line). The solid line with dots shows
the fit (8), and the dashed line the limits (9) and (10).
with jej # 0.0018. The exact limits are m ! 4b�pa
(b ø a) and m ! 1 2 4a�pb (b ¿ a). The magnetic
moment (6) for all ratios b�a is well fitted by

2M
�pa2 1 4ab�H

� 1 1 exp�1.6875 2
p

p � 2 e , (8)

with p � 10 1 jln�b�a� 1 0.288j1.968 and deviation 0 #

e # 0.004; see Fig. 2. Formula (8) is more accurate than
the fit given in Ref. [14]. The exact limits are (Fig. 2)
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The surface currents diverge at the corners symmetri-
cally as l21�3 where l is the distance from the corner, e.g.,
l � a 2 x and l � b 2 y. Near the corners one has

Jcorner � H

∑
�1 2 m�

3
p

m f�1, m�
b
l

∏1�3

. (11)

At the equator J�a, 0� � H�
p

m holds and near the poles
J�x, b��H � �x�a�f�1, 1 2 m���1 2 m� which equals
px�4a at b ¿ a and x�a at b ø a. For long slabs one
has J�a, y� � H except near the corners [see Eq. (11)].
For thin strips (b ø a) Eq. (4) yields

J�x, b� � H x �a2 2 x2�21�2, (12)

in agreement with the known sheet current 2J�x� [15,16].
On the edge of thin strips one has the fit

J�a, y� � Hm21�2 �1 2 � y�b�2�20.31 (13)

with relative error ,1% for y�b , 0.92 or ,2% for
y�b , 0.97. More limiting expressions and fits are easily
derived from the exact equations (2)–(6).

For the strip with current I . 0 and H � 0 we find the
Meissner surface currents
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(15)

These expressions are invariant when interchanging a, b
and x, y, which replaces m by 1 2 m. In the corners the
current again diverges as l21�3; cf. Eq. (11):
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Accounting for a small but finite London depth
l ø a, b, the screening currents penetrate exponen-
tially from the surface, e.g., j�x, y� � J�x, b�l21 3

exp�� y 2 b��l� near y � b. The magnetic moment
M �

R
dx

R
dy x j�x, y� is thus slightly reduced to

approximately

M�a, b, l� � M�a 2 l, b 2 l, 0� , (17)

with M�a, b, 0� from Eqs. (6),(8)–(10). Similar formu-
las are valid for specimens of any shape if the radius of
curvature of the surface is much larger than l. For our
strip, however, the sharp rectangular corners give an ad-
ditional contribution dMcorner to M�l� 2 M�0�. When
�l� min�a, b��1�3 ø 1, one has from Eq. (11)

dMcorner ~ �l2�ab�1�3M . (18)

This nonanalytical term dominates in ≠M�≠l and may ex-
plain some experimental findings in Ref. [9]. In the op-
posite case, l ¿ a, b, the vector potential of the induced
current density is negligible, thus j � 2Hx�l2 and

M�a, b, l� � 2�4a3b�3l2�H . (19)

Next we show how the current density j�x, y� and mag-
netic moment M of thick strips (and of disks) for finite
London depth l can be obtained in an elegant way, avoid-
ing the calculation and cutoff [17] of the magnetic field
around the strip. The static London equation reads

2l2m0 j 5 A 5 Aj 1 Aa , (20)

where Aj is the vector potential of the supercurrent den-
sity j and Aa is the vector potential of the applied field,
e.g., Aa � 2ẑxm0H for strips (ẑ � unit vector along z).
Inverting m0j 5 2=2Aj we get for thick strips

Aj�r� � 2m0

Z
d2r 0

lnjr 2 r0j
2p

j�r0� . (21)

with r � �x, y�, A 5 ẑA, j 5 ẑj. The integration is over
the strip cross section. From Eqs. (20) and (21) we have

Aa�r� � m0

Z
d2r 0

∑
lnjr 2 r 0j

2p
2 l2d�r 2 r0�

∏
j�r0� ,

(22)

Solving for j and using Aa � 2xm0H we obtain

j�r� � H
Z

d2r 0K�r, r0� x0 , (23)

K�r, r0� �

∑
2

lnjr 2 r0j
2p

1 l2d�r 2 r0�
∏21

. (24)

The l dependent integral kernel K�r, r0� may be computed
by choosing r and r0 on a grid and inverting the resulting
matrix similar to what is shown in Refs. [14,16].

From Eq. (23) the current density induced by H in the
Meissner-London state is obtained by a simple integra-
tion over x and y. Because of the symmetry of j�x, y� �
j�x, 2y� � 2j�2x, y� � 2j�2x, 2y� it suffices to inte-
4166
FIG. 3. The current density j�x, y� along a London strip with
square cross section (a � b) and London depth l�a � 0.025 in
a perpendicular magnetic field H. A quarter of the cross section
is shown. Note the sharp but finite peak in the corner. The inset
shows the magnetic field lines.

grate over a quarter of the strip cross section, 0 # x # a,
0 # y # b, if the kernel is made symmetric.

Similar equations follow for the strip with current I ,

j�r� � I
Z

d2r 0K�r, r0�
¡ Z

d2r
Z

d2r 0K�r, r0� , (25)

with the same kernel, Eq. (24), which, however, has a
different symmetric form since now j�x, y� � j�x, 2y� �
j�2x, y� � j�2x, 2y� holds. For a strip with both applied
field H and current I the two solutions, Eqs. (23) and (25)
may be superimposed. The same method works for thick
disks in axial field if the appropriate kernel K is used,
similar to what is shown in Ref. [16].

From the current density j�x, y� the magnetic induction
B�x, y� � �Bx , By� � �≠A�≠y, 2≠A�≠x� is obtained via

FIG. 4. The current density j�x, y� along the London strip of
Fig. 3 (a � b � 40l) but with transport current I and no ap-
plied field, H � 0.
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FIG. 5. Reduced magnetic moment of London strips M� �
M�a, b, l��M�a, b, 0� for various aspect ratios b�a. Top: Plot-
ted versus a scaled London depth �l�a�

p
1 1 a�b the curves

M��a, b, l� almost collapse. Bottom: M��a, b, l� referred to
the longitudinal limit M��a, `, l�, Eq. (26).

the Biot-Savart law or by using Eq. (21) to get A�x, y� �
Aj 1 Aa. In strip geometry the magnetic field lines are
simply the contour lines of A�x, y�. In the London case in-
side the superconductor these field lines coincide with the
contour lines of the current density since A � 2m0l2j;
see Figs. 3 and 4.

Figures 3 and 4 show that the current density exhibits
a sharp finite peak in the corners; for the depicted case
a � b � 40l this enhancement is j�a, b��j�a, 0� � 3.7
for H . 0, and j�a, b��j�a, 0� � 5.2 for I . 0. For small
l, this enhancement increases as l21�3. Clearly, this cur-
rent peak favors the nucleation of vortex loops [2] at the
corners and thus reduces the penetration field. It may also
enhance the nonlinear Meissner effect [8,9].

Figure 5 shows the magnetic moment M�a, b, l� of
London strips with various aspect ratios b�a as a func-
tion of l and normalized to the ideal Meissner moment
M�a, b, 0�, Eq. (6), and to the known M�a, `, l� of the
infinite slab. One has

lim
b!`

2M�a, b, l�
4abH

� 1 2
l

a
tanh

a
l

, (26)

with the limiting cases 1 2 l�a for l ø a and a2��3l2�
for l ¿ a. For thin strips with b ø a and b , l we find
the limits (see also the Ohmic strip and disk in Ref. [18])

2M
pa2H

�

8<
: 1 2

2l2

pab ln�5.2ab
l2 �, l2 ø ab ,

4ab
3pl2 2

2a2b2

p2l4 1 . . . , l2 ¿ ab .
(27)
Note the nonanalytic l dependence of M for small l,
which can be seen with the curve b�a � 0 in Fig. 5.

In summary, we found the exact analytical solution
for the magnetic moment and surface screening cur-
rents of long strips with rectangular cross section in the
ideal-screening Meissner state generated by a homo-
geneous magnetic field H and/or transport current I .
Accounting for a finite London penetration depth l, we
present some explicit limiting expressions and numerical
results which show a high and sharp but finite peak of
the current density j�x, y� along the four corners. This
sharp peak favors the penetration of magnetic vortices
from the corners, in the form of quarter loops spanning
the corner. From the known j�x, y� the exact shape and
growth of these loops can be obtained in principle, and
thus both the microscopic Bean-Livingston barrier [2,3]
and the macroscopic geometric barrier [4–7], as well as
the thermally activated penetration of vortex loops from
the corners can be investigated in detail.

Finally, this pronounced current peak is expected to en-
hance the nonlinear Meissner effect predicted in d-wave
superconductors [8] and to explain its dependence on the
sharpness of the specimen corners as observed in Ref. [9].
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