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We propose a new transport mechanism through tunnel-coupled quantum dots based on the coherent
population trapping effect. Coupling to an excited level by the coherent radiation of two microwaves
can lead to an extremely narrow current antiresonance. The effect can be used to determine interdot
dephasing rates and is a mechanism for a very sensitive, optically controlled current switch.

PACS numbers: 73.23.Hk, 73.40.Gk, 73.50.Pz
The analogy between real and artificial atoms (quantum
dots) suggests the transfer of concepts from atomic physics
to ultrasmall semiconductor structures. If methods such as
optical coherent control are combined with the tunability
of quantum dots, basic quantum mechanical effects such
as preparation in a superposition of states and quantum
interference can be realized and controlled in artificial mi-
croscopic devices. The interaction with light has been used
to create coherent superpositions of states in single [1] and
double quantum dots [2]. Furthermore, external radiation
fields lead to nonlinear electron transport effects such as
photoassisted tunneling and photosidebands [3,4].

In this Letter, we propose a new transport mechanism
through tunnel-coupled quantum dots based on the co-
herent population trapping effect, a well-known effect in
atomic laser spectroscopy [5]. We predict that the inter-
action with coherent light of two frequencies can be used
to pump a current through a double dot. As a function
of the relative detuning of the two frequencies the current
shows an extremely narrow antiresonance, i.e., an optically
controlled abrupt transition from a conducting to a noncon-
ducting state. We furthermore show that the vanishing of
the current antiresonance due to dephasing of the coupled
ground states coherence (which can be controlled by tun-
ing the tunnel coupling) can be used to obtain quantitative
estimates for inelastic dephasing rates in coupled dots.

The effect appears in double quantum dots where elec-
tron transport involves tunneling through two bonding and
antibonding ground states j1� and j2� and one additional
excited state j0�; see Fig. 1. Leads coupled to both dots
have chemical potentials such that electrons can tunnel into
the ground states but leave the dot only through the ex-
cited state. The system is driven by two light (microwave)
sources with frequencies v1 and v2 that are detuned off
the two excitation energies by h̄d1 :� ´0 2 ´1 2 h̄v1
and h̄d2 :� ´0 2 ´2 2 h̄v2. Relaxation from the excited
level by acoustic phonon emission traps the dot in a coher-
ent superposition of the bonding and the antibonding state,
if dR :� d2 2 d1 is tuned to zero. In this case, the ex-
cited level becomes completely depopulated. In the case
of real atoms, the resulting trapping of the electron in a ra-
diatively decoupled coherent superposition leads to “dark
0031-9007�00�85(19)�4148(4)$15.00
resonances” in the fluorescence emission. In the double
dot case discussed here, the dark resonance effect appears
as a suddenly vanishing electron current for dR � 0. We
suggest that for low enough microwave intensity, the effect
can serve as a very sensitive, optically controlled current
switch.

Atomic dark states have been found to be extraordinary
stable against a number of perturbations [6]. In the
quantum dot case, due to the Pauli blocking of the leads,
a trapped electron cannot tunnel out of the ground state
coherent superposition. Furthermore, this superposition is
protected from incoming electrons due to Coulomb block-
ade (no second electron can tunnel in). These two mecha-
nisms guarantee the robustness of the effect, which is
limited only by dephasing from inelastic processes. The
latter are due to spontaneous emission of phonons in
double dots [7,8] and can be controlled by tuning system
parameters with gate voltages.

In our model, we consider a double quantum dot in the
strong Coulomb blockade regime that is determined by
transitions between states of fixed particle number N and
N 1 1. The two tunnel-coupled N 1 1-particle ground
states jG� and jG0� (see Fig. 1, inset) have energy dif-
ference ´ :� ´G0 2 ´G and hybridize into states j1� and
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FIG. 1. Level scheme for two coupled quantum dots in the
Coulomb blockade regime. Two tunnel-coupled ground states
jG� and jG0� (small inset) form states j1� and j2� from which an
electron is pumped to the excited state j0� by two light sources of
frequency v1 and v2. Relaxation by acoustic phonon emission
is indicated by dashed arrows.
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j2� of energy difference D :� ´2 2 ´1 � �´2 1 4T2
c �1�2.

Here, Tc denotes the tunnel-coupling matrix element. The
system is irradiated with two coherent microwave sources
with frequencies v1 and v2, driving the transitions j1� !
j0� and j2� ! j0�. Here, j0� is the first excited state of the
same electron number N 1 1 in the right dot with energy
´0. Furthermore, the energy of the first excited level j00�
of the other (left) dot is assumed to be in off resonance for
transitions to and from the two ground states. If the energy
difference ´00 2 ´0 is much larger than Tc, the hybridiza-
tion of j00� with j0� can be neglected.

The microwave radiation pumps electrons into the ex-
cited level j0� such that transport through N 1 1-particle
states becomes possible if both dots are connected to reser-
voirs of free two-dimensional electrons. We assume the
Coulomb charging energy U to be so large that states with
two additional electrons can be neglected. Typical values
are 1 & U & 4 meV in lateral double dots [7]. The chemi-
cal potentials m and m0 are tuned slightly above ´2; this
excludes the co-tunneling-like reentrant resonant tunneling
process that can exist in three-level dots [9].

The light coupling is described by an interaction Ham-
iltonian in the rotating wave approximation,

HI �t� � 2
h̄V1

2
e2iv1t j0� �1j

2
h̄V2

2
e2iv2tj0� �2j 1 H.c., (1)

where nonresonant terms have been neglected and Vj �
�Ej�h̄� �0jezj j�, j � 1, 2, are the Rabi frequencies, where
Ej is the projection of the electric field vectors of the
light onto the dipole moments for the transitions 1 ! 0,
2 ! 0. The coupling of the dot ground states to the leads
is described by the standard tunnel Hamiltonian

HV �
X

ki�G,G0

�Vkic
y
kijE� �ij 1 c.c.� (2)

and correspondingly for the excited state j0�. Here, jE�
denotes the “empty” double dot N-particle state before
tunneling of an additional electron, c

y
ki creates an electron

with quantum number k in the reservoir connected to the
dot ground state i � G or i � G0, and Vki denotes the
corresponding tunnel matrix element. The rates G (right
dot) and G0 (left dot) for tunneling between the dots and
the connected reservoirs can be calculated from HV by sec-
ond order perturbation theory. If the chemical potentials
m and m0 are as indicated in Fig. 1, electron tunneling oc-
curs by in tunneling that changes jE� into jG� at a rate G

and jE� into jG0� at the rate G0, whereas out tunneling
from jG� and jG0� is Pauli blocked. The corresponding
rates g1 and g2 for tunneling into the hybridized states j1�
and j2� are g1,2 � ��D 6 ´�2G 1 4T2

c G0����D 6 ´�2 1

4T2
c �. On the other hand, electrons can leave the dot only

by tunneling out of the state j0� (but not in) at the rate G.
This tunneling is only into the right lead because we as-
sumed negligible hybridization of j0� with j00�. Here and
in the following, we neglect the energy dependence of G

and G0 for simplicity.
In coupled quantum dots, decay of excited levels is due

to spontaneous emission of phonons rather than photons
[7]. We denote the corresponding decay rates for the state
j0� and j2� by G0 and G21, respectively. The lowest state
j1� is stable against decay. For the moment, we take these
rates as given and discuss quantitative estimates below.
We are then in the position to set up equations of motion
for the time-dependent occupation probabilities pj�t�, j �
E, 1, 2, 0, of the four double dot states. The spontaneous
phonon emission and the single electron tunneling gives
rise to an incoherent dynamics, while the electron-light
interaction in treated fully coherently. One has

�pE � 2�g1 1 g2�pE 1 Gp0 ,

�p0 � 2�G0 1 G�p0 1 Im�V1r̃10 1 V2r̃20� ,

�p1 � a1G0p0 1 g1pE 1 G21p2 2 Im�V1r̃10� ,
(3)

�p2 � a2G0p0 1 g2pE 2 G21p2 2 Im�V2r̃20� .

Here, a1 � 1 2 a2 � �D 1 ´�2���D 1 ´�2 1 4T2
c � and

r̃0j � r̃
�
j0 � r0jeivj t are slowly varying off-diagonal ma-

trix elements of the reduced density operator of the double
dot, whose equations of motion close the set (3). One has

�̃r10 � 2D1r̃10 1 i
V

�
1

2
�p1 2 p0� 1 i

V
�
2

2
r̃12 ,

�̃r02 � 2D2r̃02 2 i
V2

2
�p2 2 p0� 2 i

V1

2
r̃12 , (4)

�̃r12 � 2�idR 1 G21�2�r̃12 2 i
V

�
1

2
r̃02 1 i

V2

2
r̃10 ,

where we defined resonance denominators Dj :�
�21�jidj 1 ajG

0 1 G�2 that appear in the solution
for the coherences in the stationary case for large times
which we consider from now on. Together with the
normalization condition pE 1 p1 1 p2 1 p0 � 1, the
stationary solution is then easily obtained.

Before discussing the stationary tunnel current, we esti-
mate the inelastic rates G0 and G21 which determine if or
if not the effect can be observed in quantum dots at all.
In the following, we restrict ourselves to lateral dots. Re-
laxation from the excited dot level j0� is due to acoustic
phonon emission at a rate

G0 � �2p�h̄�
X
Q

jlQj
2d�h̄vQ 2 ´0�Fz�qz�G�qk� , (5)

where lQ is the deformation potential matrix element,
Q � �qk, qz� the phonon wave vector, vQ � cjQj, and
Fz and G are the quantum well and lateral dot form factor
which cut off phonons with jqzj * l21

z and jqkj * l21,
where lz is the quantum well width and l an estimate
for the dot diameter. For ´0 & 0.5 meV and a typical
well width of lz � 50 Å, only the lateral cutoff G is ef-
fective here at energies above h̄vl � h̄c�l, where c is
4149
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the longitudinal speed of sound [10]. The explicit form
of G depends on the shape of the many-electron wave
functions �x j 0� and �x j i�, i � 1, 2 and is never known
exactly for realistic dots with N * 10 electrons. As-
suming a form G�q� � �ql�2��1 1 �ql�2�2 that smoothly
interpolates between G�0� � G�`� � 0 and using mate-
rial parameters for GaAs and l � 200 nm, we find rates
between G0�´0 � 0.5 meV� � 6 3 108 s21 and G0�´0 �
10 meV� � 2 3 1010 s21. Most important for the obser-
vation of the population trapping effect in dots is the relax-
ation rate G21. In GaAs�AlGaAs lateral double dots, G21 is
mainly due to the spontaneous emission of phonons [7,8].
In experiments, gate voltages can be applied to tune the
ground state level splitting to small values. Here, we as-
sume D & 20 meV where form factor cutoffs are no longer
effective. One obtains

G21�D� 	 2p

µ
Tc

D

∂2

g
D

h̄

∑
1 2

sin�D�h̄vd�
D�h̄vd

∏
, (6)

where vd :� c�d, g & 0.05 the dimensionless coupling
constant, d is the distance between the dot centers, and we
assumed identical shapes of both dots for simplicity and
neglected the small overlap between the states jG� and
jG0�. Furthermore, a simplified model with bulk piezo-
electric phonons has been adopted. Important here is that
in contrast to real atoms the spontaneous rate G21 can be
tuned in gated double dots by varying Tc and/or ´. This al-
lows one to study how the coherent superposition of states
is destroyed due to the interaction with the phonon bath as
discussed now.

The stationary electric current I is obtained from the
net flow of electrons with charge 2e , 0 through ei-
ther of the tunnel barriers connecting the dot to the reser-
voirs, I � 2eG�p0 2 pE�stat � 2eG0�pE�stat. Figure 2
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FIG. 2. Tunnel current antiresonance through double dot
system from Fig. 1 with ground state energy difference
´ � 10 meV. The Rabi frequencies V1 and V2 are taken to
be equal, parameters are VR � 0.2G0 and G � G0 � G0 �
109 s21, where G0 is the relaxation rate due to acoustic phonon
emission from j0�. Inset: Inelastic rate G21 (in meV�h̄), Eq. (6),
with h̄vd � 20 meV. The dashed line indicates the crossover
at G21�2 � jVR j

2�2�G0 1 G�; cf. Eq. (7).
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shows the result for I as a function of the Raman detun-
ing dR for V1 � V2 and ground state energy difference
´ � 10 meV. Our calculations have been done for zero
temperature T � 0. For finite T , reabsorption of phonons
which would smear the ground state levels can be sup-
pressed by choosing a sufficiently large ´ * kBT .

Close to dR � 0, the overall Lorentzian profile breaks
in and shows a sharp current antiresonance. For fixed
microwave intensity (fixed Rabi frequency VR :� �V2

1 1

V
2
2�1�2) and increasing tunnel coupling Tc, the inelastic

rate G21, Eq. (6), increases (inset). As a result, the anti-
resonance becomes broader and finally disappears for
larger tunnel coupling Tc. The half-width d1�2 of the
current antiresonance can be found via the stationary
solutions of Eqs. (3) and (4) from the pole of a two-photon
denominator as a function of dR. We find for the sym-
metric case ´ � 0

d1�2 	
G21

2
1

jVRj
2

2�G0 1 G�
. (7)

Thus, d1�2 increases with the inelastic rate G21. For fixed
microwave intensity, the vanishing of the antiresonance
sets in for G21 * jVRj

2��G0 1 G�; cf. the inset of Fig. 2.
On the other hand, with increasing elastic tunneling G out
of the dot we recognize the striking fact that d1�2 decreases
down to its lower limit G21�2. This behavior is shown in
Fig. 3. For increasing tunnel rate G, the current increases
until an overall maximal value is reached at G 	 G0. The
curve I�dR� decreases again and becomes very broad if the
elastic tunneling becomes much faster than the inelastic
relaxation G0. Simultaneously, the center antiresonance
then becomes sharper and sharper with increasing G, its
half-width d1�2 approaching the limit G21�2, Eq. (7).

The appearance of the sharp current antiresonance is due
to a trapping of the additional electron in a coherent super-
position of the two ground states j1� and j2� that decouples
from the light. One can define linear combinations [5]
jNC�t�� :� �V2�VR� j1� 2 �V1�VR�ei�v22v1�tj2� and the
orthogonal state jC�t��. At Raman resonance, only jC�t��
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FIG. 3. Current for fixed coupling Tc and different tunnel rates
G � G0. Parameters are ´ � 10 meV, G0 � 109 s21, VR �
1.0G0, and Tc � 1 meV.
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couples to the light, and excitation of the electron from
jC�t�� to the excited state j0� with a subsequent decay into
jC�t�� and jNC�t�� gradually pumps all the population into
jNC�t��. This is because in the latter state the electron is
decoupled from the light and cannot be excited again.

We point out that the resonance effect described here
differs physically from other transport effects in ac-driven
systems, such as coherent destruction of tunneling [11],
tunneling through photosidebands [12], or coherent pump-
ing of electrons [13,14]. These phase-coherent effects are
due to an additional time-dependent phase that electrons
pick up while tunneling. Then, the time evolution within
the system is ideally completely coherent with dissipation
being a disturbance rather then necessary for the effect to
occur. In contrast, the trapping effect discussed here re-
quires incoherent relaxation (phonon emission) within the
system in order to create the trapped coherent superposi-
tion of the ground states.

To conclude, our results suggest that the population trap-
ping effect can be observed in the tunnel current through
double dots irradiated with two microwaves. It offers
the possibility to switch a current optically and to de-
termine the interdot inelastic rate G21 from the antireso-
nance linewidth d1�2, Eq. (7). The microwave frequencies
n should be such that the first excited level in one of the
dots is coupled by one-photon processes to the ground
states. An estimate with a single particle excitation energy
of d´ � 0.5 meV yields n � d´�h � 120 GHz which
should be attainable with present day technology. The
Raman shift dR 
 d2 2 d1 can be scanned through by
fixing one of the frequencies (e.g., v1) at resonance such
that d1 
 0, and changing v2 and therewith dR � v1 2

v2 2 D�h̄. Both the relaxation rate G0 and the dephasing
rate G21 then can be obtained from I�dR� curves for dif-
ferent values of, e.g., the tunnel coupling Tc or the energy
difference ´.

Finally, we comment on the dephasing channel due to
tunneling of electrons from the ground state coherent su-
perposition into holes created by absorption of photons in
the leads. The rate Gr for such processes is proportional
to �VR�2pn�2 [15] and turns out to be at least 1 order of
magnitude less than the intrinsic dephasing rate G21 unless
one tunes to very small tunnel couplings Tc & 0.5 meV.
In this regime, Gr starts to dominate over G21, and the
half-width d1�2 then becomes independent of Tc.
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