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We present a new Monte Carlo algorithm for studying site or bond percolation on any lattice. The
algorithm allows us to calculate quantities such as the cluster size distribution or spanning probability
over the entire range of site or bond occupation probabilities from zero to one in a single run which
takes an amount of time scaling linearly with the number of sites on the lattice. We use our algo-
rithm to determine that the percolation transition occurs at pc � 0.592 746 21�13� for site percolation on
the square lattice and to provide clear numerical confirmation of the conjectured 4�3-power stretched-
exponential tails in the spanning probability functions.

PACS numbers: 64.60.Ak, 05.10.Ln, 05.70.Jk
Percolation [1] is one of the best studied problems in sta-
tistical physics, both because of its fundamental nature and
because of its applicability to a wide variety of different
systems. Percolation models have been used as a represen-
tation of resistor networks [2], forest fires [3], epidemics
[4], biological evolution [5], and social influence [6], as
well as, of course, percolation itself. The word percolation
appears in the title of almost four thousand physics papers
of the last quarter of a century.

Numerical studies of percolation are straightforward by
comparison with many simulations in statistical physics
because no Markov process is needed to perform impor-
tance sampling. One can generate a single correct sample
from the ensemble of possible states of a site (bond) per-
colation model on any lattice simply by populating each of
the sites (bonds) of that lattice independently with occu-
pation probability p. Typically one then finds all the con-
nected clusters of occupied sites (bonds) in the resulting
configuration using either depth-first or breadth-first
search, and uses this information to calculate some observ-
able of interest, such as average or largest cluster size.
An extension of this method is the well-known Hoshen-
Kopelman algorithm [7], which allows one to find all the
clusters while storing the state of only a small portion
of the lattice at any time. Other numerical algorithms
have been developed to answer specific questions about
percolation models, such as the hull-generation algorithm
[8,9], which can tell us whether a cluster exists which
spans a square lattice with open boundary conditions
without actually populating all the sites of that lattice first.

All of these algorithms have one feature in common:
they tell us about the properties of the system for one
specified value of p only. In most cases one would like
to know about the properties of the system over a range
of values anywhere up to the entire domain 0 # p # 1.
Although p can in theory take any real value in this range,
we need not, on a system of finite size, study an infinite
number of values of p to answer a question about that
system with arbitrary precision. In fact, on a system of N
sites, we need measure an observable Q only for systems
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having a fixed number n of occupied sites (or bonds). We
will refer to this as the “microcanonical ensemble” for the
percolation problem. If we can measure the values Qn of
our observable for all 0 # n # N (or the equivalent range
for bond percolation), then we can find the value Q�p� for
the more common “canonical ensemble” for any value of
p by convolution with a binomial distribution:

Q�p� �
X
n

µ
N
n

∂
pn�1 2 p�N2nQn . (1)

Both depth-first and breadth-first searches take time O�N�
to construct all clusters, and since there are O�N� possible
values of the number of occupied sites or bonds, it is there-
fore possible to calculate Q�p� over the entire range of p
in time O�N2�. The hull-generating algorithm can perform
the same calculation marginally faster, in time O�N15�8�,
but is, as mentioned above, restricted to measuring only
certain observables such as the existence (or not) of a
system-spanning cluster. Histogram interpolation methods
[10] can reduce the time taken for a general measurement
to O�N3�2�, at the cost of a reduction in numerical pre-
cision, while the position of the percolation point can be
found in time O�N logN�, by performing a binary search
among the N possible values of n [1,11].

In this paper we present a new algorithm which can
find the value of a quantity or quantities over the entire
range of p from zero to one in time O�N�— an enormous
improvement over the simple O�N2� algorithm described
above. As a corollary, the algorithm can also find the
position of the percolation point in time O�N�, since one
can consider the existence (or not) of a spanning cluster to
be the observable of interest. Our algorithm calculates the
value of the quantity or quantities of interest for all values
of n in the microcanonical ensemble described above and
the value in the canonical ensemble can then be calculated
by employing Eq. (1). We describe the algorithm first for
the bond percolation case, which is slightly simpler than
site percolation.

The basic idea behind our algorithm is the following.
We start with a lattice in which no bonds are occupied,
© 2000 The American Physical Society
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and hence every site is a separate cluster. Each of these
single-site clusters is given a unique label (e.g., a positive
integer) by which we identify it. We then fill in bonds
on the lattice in random order. When a bond is added
to the lattice it either connects together two sites which
are already members of the same cluster — in which case
we need do nothing—or it connects two sites which are
members of two different clusters. In this second case we
must change the labels of one of the clusters to reflect the
fact that the new bond has amalgamated the two. In order
to accomplish this efficiently, we store the clusters using a
tree structure in which one site in each cluster is chosen to
be the “root node” of that cluster and contains the cluster
label. All other sites in the cluster possess pointers which
point either to the root node, or to another site in the cluster,
such that by following a succession of such pointers one
can get from any site to the root node. This scheme is
illustrated for the case of the square lattice in Fig. 1a. (A
similar scheme is used in the Hoshen-Kopelman algorithm
[7].) Clusters can now be efficiently amalgamated simply
by adding a pointer from the root node of one to the root
node of the other (dotted arrow in the figure), thereby
making the former a subtree of the latter [12].

Our algorithm consists of repeatedly adding a random
bond to the lattice, identifying the clusters to which the
sites at its ends belong by traversing their respective trees
until we find the root nodes, and then, if necessary, amal-
gamating the two trees. Generically, this kind of algorithm
is known as a “union-find” algorithm in the computer sci-
ence literature. Our implementation for the percolation
problem uses the “weighted union-find with path compres-
sion” [13], in which (a) two trees are always amalgamated
by making the smaller a subtree of the larger (“weighting”)
and (b) the pointers of all nodes along the path traversed to
reach the root node are changed to point directly to the root
(“path compression”). Tarjan [14] has shown for this al-
gorithm that the average number of steps taken to traverse
the tree is proportional to a�n�, where a is the functional
inverse of Ackermann’s function and n is the number of
nodes in the tree. This in turn implies that the number
of steps is effectively constant as the tree becomes large.
Our simulations confirm this result, the constant taking a
value of about 3.6 on the square lattice, for example. The
computation time taken in all other parts of the algorithm

(b)(a)

FIG. 1. Two adjacent clusters in a bond percolation system.
(a) The arrows represent pointers and the shaded sites are root
nodes. (b) The difference in displacements (double-headed ar-
rows) between the two sites and the root node of a cluster can
be used as a criterion for detecting the onset of percolation.
is also constant, and thus the time taken for each bond to
be added is O�1� and the time taken to add all N bonds is
O�N�. Hence we can construct clusters for all values of n
in one run of length O�N�.

The weighting in the tree union algorithm requires that
we know the number of nodes in each cluster. This is
easy to arrange, however: we store the cluster sizes at
the root nodes of the clusters and when two clusters are
amalgamated we simply add their cluster sizes together.

In order to actually measure some quantity of interest
we usually have to do some additional work. For example,
if we wish to measure largest cluster size we need to keep
a running score of the largest cluster seen so far, as the
algorithm progresses. If we wish to measure the position
of the percolation point, we can do so by adding variables
to each site in a cluster which store the displacement to
the “parent” node in the tree. Then when we traverse the
tree, we add these displacements together to find the total
displacement to the root node. When we add a bond to the
lattice which connects together two sites which belong to
the same cluster, we calculate the two such displacements
and take their difference. On a lattice with periodic (toroi-
dal) boundary conditions percolation has not occurred if
this difference is equal to a single lattice unit, otherwise it
has —see Fig. 1b. (The same technique has been used to
find the percolation point of Fortuin-Kasteleyn clusters in
the Potts model [15].)

For site percolation, the algorithm is very similar to the
one for the bond case just described. Sites are added in
random order, and each one added either forms a new de-
tached cluster in its own right, joins onto a single neighbor-
ing cluster, or joins together two or more extant clusters.
The clusters are stored in a tree structure as before, and
overall operation takes time O�N�.

We have tested our algorithm for both site and bond
percolation on square lattices of L 3 L sites with L up
to 10 000. The time taken for one run of our algorithm is
found to scale as Na with a � 1.02 6 0.04, in agreement
with the expected value of a � 1. Even for the largest sys-
tems, a single run takes only about 100 sec on current com-
puters. Larger systems still would be easily within reach
but we are limited by the amount of memory available.
This is not an important issue, however, since statistical
error, rather than finite-size scaling, is the principal factor
limiting the accuracy of our numerical results, making it
more sensible to spend resources on reducing these errors
than on simulating especially large systems.

In this paper we apply our algorithm to the calculation
of the probability RL�p� for a cluster to wrap around the
periodic boundary conditions on a square lattice of L 3 L
sites with site percolation. For large L this probability is
equal to the probability that the system percolates. Since
cluster wrapping can be defined in a number of different
ways there are a corresponding number of different proba-
bilities RL. Here we consider the following: R�h�

L
and R�y�

L
are the probabilities of wrapping horizontally or vertically
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around the system respectively; R�b�
L

is the probability
of wrapping around both directions simultaneously;
R�e�

L
is the probability of wrapping around either direc-

tion; and R�1�
L

is the probability of wrapping around one
direction but not the other. (Note that configurations
which wrap around both directions are taken to include
both those which wrap directly around the boundary
conditions and “spiral” configurations in which a cluster
wraps around both directions before joining up.) For the
square systems considered here, these probabilities satisfy
the relations:

R
�h�
L � R

�y�
L ,

R
�e�
L � R

�h�
L 1 R

�y�
L 2 R

�b�
L � 2R

�h�
L 2 R

�b�
L , (2)

R
�1�
L � R

�h�
L 2 R

�b�
L � R

�e�
L 2 R

�h�
L �

1
2 �R�e�

L 2 R
�b�
L � ,

as well as the inequalities R
�b�
L # R

�h�
L # R

�e�
L and

R
�1�
L # R

�h�
L .

Most previous studies of RL�p� have examined the
probability of a cluster connecting the boundaries of open
systems. The work presented here differs from these
studies by focusing on wrapping probabilities for periodic
systems, and constitutes the first precise such study. As
we will show, the use of wrapping probabilities yields
estimates of the position of the percolation threshold with
much smaller finite-size corrections than open-boundary
methods.

To measure the wrapping probability we perform a num-
ber of runs of the algorithm to find the number of occupied
sites n for which cluster wrapping first occurs in the ap-
propriate direction. Then the corresponding RL within the
microcanonical ensemble is simply the fraction of runs for
which that point falls below n. Convolving the resulting
curve with a binomial according to Eq. (1) then gives us
RL within the canonical distribution. Figure 2 shows RL

for each of the four definitions above for a variety of sys-
tem sizes. Note that R�1�

L
in frame (d) is nonmonotonic,

since the probability of wrapping around one direction but
not the other tends to zero as p ! 1.

The exact values of RL at percolation for each of the
definitions above have been derived by Pinson [16,17], and
are R

�h�
` �pc� � 0.521 058 290, R

�e�
` �pc� � 0.690 473 725,

R
�b�
` �pc� � 0.351 642 855, and R

�1�
` �pc� � 0.169 415 435.

We can use these figures to measure the value of pc, which
is not known exactly for site percolation on the square lat-
tice, by finding the value of p for which RL�p� � R`�pc�.
These estimates turn out to scale particularly well with
system size. For each of the definitions of RL we find nu-
merically that the difference RL�pc� 2 R`�pc� scales ap-
proximately as L22. Since the width of the critical region
scales as L21�n , this implies that our estimates of pc in
finite systems should have a leading order finite-size cor-
rection which goes as L2221�n � L211�4. This represents
a very rapid convergence, in contrast to the L21�n behavior
of typical percolation estimates (such as RG estimates) and
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FIG. 2. Plots of the cluster wrapping probability functions
RL�p� for L � 32, 64, 128, and 256 in the region of the per-
colation transition for percolation (a) along a specified axis, (b)
along either axis, (c) along both axes, and (d) along one axis but
not the other. Note that (d) has a vertical scale different from
the other frames. The dotted lines denote the expected values of
pc and R`�pc�.

the L2121�n of certain open-system estimates [18], which
is the best previously known convergence. Note that if
the microcanonical values of RL are used instead of the
canonical ones, the difference RL�pc� 2 R`�pc� scales as
L21�2, making this method significantly inferior to the one
described above.

The nonmonotonic probability function R�1�
L

�p� is never
equal to R�1�

`
�pc� because the value of R�1�

L
on systems of

finite size is less than the value at L � `. However, in this
case we can estimate pc from the position of the maximum
of the function, and this estimate is also expected to scale
as L2221�n .

In Fig. 3 we show the values of pc estimated from our
Monte Carlo results as a function of L211�4 for L � 32,
64, 128, and 256 for each of the four definitions of RL. At
least 3 3 108 runs were carried out for each system size
to achieve high statistical accuracy. Two different random
number generators were used: a two-tap 32-bit additive
lagged Fibonacci generator with taps at 418 and 1279, and
a four-tap 32-bit XOR generator with taps at 471, 1586,
6988, and 9689. Allowing for statistical fluctuation, results
were consistent between generators.

The best fits to L211�4 give estimates for the position of
the percolation threshold for site percolation on the square
lattice of 0.592 746 21�13� for R�h�

L
, 0.592 746 36�14� for

R�e�
L

, 0.592 746 06�15� for R�b�
L

, and 0.592 746 29�20� for
R�1�

L
. Our best estimate of pc is therefore

pc � 0.592 746 21 6 0.000 000 13 , (3)

which is more accurate by a factor of 4 than the best pre-
viously published estimate of this quantity [18,19] and
should prove useful for high-precision studies of perco-
lation in the future.
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FIG. 3. Finite-size scaling of the estimated value of pc for
site percolation for R�h�

L
(circles), R�e�

L
(squares), R�b�

L
(upward-

pointing triangles), and R�1�
L

(downward-pointing triangles). In-
set: Scaling plot of the wrapping probabilities R�h�

L
(lower curve)

and R�b�
L

(upper curve). The dotted line indicates the slope of
the expected 4

3
-power tail.

While it is encouraging to be able to estimate pc so ac-
curately, the real power of our algorithm lies in its ability
to efficiently estimate a function such as RL�p� over the
entire range of p. To demonstrate the application of this
idea, we have used our simulations to extract explicit evi-
dence of the expected 4

3 -power tail in the logarithm of the
cluster wrapping probability function.

The probability RL�p� that a given realization of a per-
colation model will wrap around a finite lattice at a par-
ticular value of p is expected to go as exp�2L�j� when
j ø L [11,20]. Putting j � �pc 2 p�2n we thus get

RL � exp�2L�pc 2 p�n� . (4)

This variation with p is difficult to detect using standard
algorithms for measuring RL (see, for example, Ref. [11]),
since one needs to generate large numbers of samples at
many different values of p, and almost all of that work
will be wasted, since most of the systems simulated do not
percolate. Our algorithm, however, shows the behavior of
Eq. (4) clearly without further work. Equation (4) implies
that a plot of log�2 logRL� against log�pc 2 p� should
have an asymptotic slope of n �

4
3 . In the inset of Fig. 3

we show such a plot for the functions R�h�
L

and R�b�
L

for

systems with L � 256. The 4
3 -power tail is clearly visible.

To conclude, we have presented a new Monte Carlo al-
gorithm for studying site or bond percolation on any lat-
tice. The algorithm is capable of measuring the entire
curve of an observable quantity as a function of the oc-
cupation probability p in a single run taking time of order
the volume of the system. We have also proposed a new
and highly accurate method for measuring the position of
the percolation threshold by calculating the probabilities
for clusters to wrap around the boundary conditions on a
toroidal system. We have used this method in combination
with our Monte Carlo algorithm to find the value of pc for
site percolation on the square lattice to greater accuracy
than any previously published calculation. In addition we
have used our algorithm to demonstrate clearly the pres-
ence of the expected 4

3 -power tails in the logarithm of the
cluster wrapping probability.
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