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Incremental Approach to Strongly Correlated Many-Body Finite Systems
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The transition and the Green operators of an interacting N body system are obtained from the solutions
of the N 2 M body problem where M � 1, 2, . . . , N 2 2. This is achieved via the development of a
cumulative, nonperturbative approach that makes use of existing knowledge on the system when the
number of interacting particles is reduced. The method is applied to four interacting Coulomb particles
where the Green operator is expressed as a sum of Green operators of all three body subsystems that
can be combined within the four body system. The calculated four particle continuum spectrum is in a
remarkable agreement with recent experimental findings.

PACS numbers: 34.10.+x, 25.10.+s, 34.80.Dp, 34.80.Ht
The description of the spectrum of many interacting
particles is a problem of a long-standing history in theo-
retical physics. One of the efficient solution procedures
has been to reduce the many-body problem to one for a
single particle moving in an effective (nonlocal) field cre-
ated by all other particles. For computationally tractable
solutions approximate expressions for the effective field
are employed according to certain recipes such as those
provided by the local approximation within the density
functional theory [1]. With the advent of many particle
spectroscopy, however, it has been possible to probe in
great detail the properties of many-body systems that are
strongly dependent on the interparticle correlation. For
example, the double and triple ionization and ionization/
excitation of localized and delocalized electronic systems
by an ultraviolet photon [2–4] cannot be described with-
out the explicit use of correlated few-body states. Re-
cently, experiments have pushed the limits to explore in
full detail the many-body continuum spectrum of four or
more interacting particles [4–10]. For this case, theory is
lagging way behind. On the other hand, a system stud-
ied intensively in nuclear, atomic, and molecular physics
is that consisting of three interacting particles. In 1961
Faddeev proposed coupled linear integral equations with a
square integrable kernel to solve the three particle problem
[11,12]. Nowadays, we have a wealth of further analyti-
cal and numerical methods at hand to deal with three body
systems. In view of this situation it seems worthwhile to
develop for the four body problem, in particular, and for
N body systems in general, a cumulative method that takes
advantage of previously accumulated knowledge on the so-
lution of the N 2 1 particle problem.

The fundamental quantity that describes the microscopic
properties of N body quantum systems is the Green opera-
tor G�N� which is the resolvent of the total Hamiltonian.
It can be deduced from the Lippmann-Schwinger equation
G�N� � G0 1 G0U�N�G�N� where G0 is the Green opera-
tor of a reference N particle system which is usually cho-
sen as a noninteracting system. An equivalent approach
to determine the dynamical behavior of a system is to
derive the respective transition operator T �N� which sat-
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isfies the integral equation T �N� � U�N� 1 U�N�G0T �N�.
These integral equations for G�N� and T �N� provide a natu-
ral framework for perturbative treatments. However, for
N $ 3 the application of the above Lippmann-Schwinger
equations (and those for the state vectors) is hampered
by mainly two difficulties: (1) as shown in Refs. [13,14]
the Lippmann-Schwinger equations for the state vectors do
not have a unique solution, and (2) as shown by Faddeev
[11,12] the kernel of these integral equations K � G0U�N�

is not a square integrable operator for N $ 3, i.e., the norm
kKk � �Tr�KKy��1�2 is not square integrable. The kernel
K is also not compact.

This study proceeds as follows: (a) We develop a re-
cursive procedure to express the Hamiltonian of N inter-
acting body systems in terms of Hamiltonians of systems
with a reduced number of interactions. (b) In the spirit
of the Faddeev approach [11,15,16] we derive nonper-
turbative integral equations with the following properties:
(1) they treat all N particles on equal footing, and (2) they
relate in a linear manner G�N� and T �N� to G�N2M� and
T �N2M� where M � 1, 2, . . . , N 2 2. (c) We develop a
systematic and mathematically sound scheme for approxi-
mations and apply it to deduce the continuum spectrum of
four interacting Coulomb particles.

To this end we consider a nonrelativistic system con-
sisting of N interacting particles. We assume the total po-
tential to be of the class U�N� �

PN
j.i�1 yij without any

further specification of the individual potentials yij . The
potential U�N� satisfies the recurrence relations

U�N� �
1

N 2 2

NX
j�1

u
�N21�
j , (1)

u
�N21�
j �

1
N 2 3

N21X
k�1

u
�N22�
jk , j fi k , (2)

where u
�N21�
j is the total potential of a system of N 2 1

interacting particles in which the j particle is missing,
i.e., in terms of the physical pair potentials ymn one can
write u

�N21�
j �

PN
m.n�1 ymn, m fi j fi n. It is straight-

forward to show that the potential expansions [Eqs. (1)
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and (2)] are reflected in similar relations for the total
Hamiltonian. Figure 1 illustrates how, according to
Eqs. (1) and (2), the potential of a system of six inter-
acting particles is expressed in terms of potentials of five
correlated particles. The latter potentials can be further ex-
pressed in terms of four body potentials [cf. Eq. (2)]. This
procedure is repeated until a potential with a desired num-
ber of interactions is achieved. From Fig. 1 it is clear that
this “minimal geometric reduction” scheme [Eqs. (1) and
(2)] treats all interactions on equal footing and provides
maximal flexibility to reduce systematically the N body
potential (Hamiltonian) to sums of N 2 M potentials
(Hamiltonians) with M � 1, 2, . . . , N 2 2. This simple
geometric observation has wide ranging consequences
in that the transition and the Green operators can be
expanded in the same way. This can be seen as follows:
According to the decomposition (1), the integral equation
for the transition operator can be written as

T �N� �
NX

j�1

T
�N21�
j , (3)

T
�N21�
j � ũ

�N21�
j 1 T �N�G0ũ

�N21�
j , j � 1, . . . , N .

(4)

Here we introduced the scaled potentials ũ
�N21�
j �

�u�N21�
j ���N 2 2�. The physical meaning of the operators

(4) is illustrated in Fig. 2 for the system depicted in Fig. 1.
The transition operator of the system, when N 2 1

particles are interacting via the scaled potential ũ
�N21�
j ,

is t
�N21�
j � ũ

�N21�
j 1 ũ

�N21�
j G0t

�N21�
j . With this relation

Eq. (4) can be reformulated as
T
�N21�
j � t

�N21�
j 1 t

�N21�
j G0T �N� 2 t

�N21�
j G0�ũ�N21�

j 1 ũ
�N21�
j G0T �N�� � t

�N21�
j 1 t

�N21�
j G0�T �N� 2 T

�N21�
j �

� t
�N21�
j 1 t

�N21�
j G0

NX
kfij

T
�N21�
k . (5)

Equation (5) can be expressed alternatively in a matrix form as
0
BBBBBBBBBBB@

T
�N21�
1

T
�N21�
2

...

T
�N21�
N21

T
�N21�
N

1
CCCCCCCCCCCA

�

0
BBBBBBBBBBB@

t
�N21�
1

t
�N21�
2

...

t
�N21�
N21

t
�N21�
N

1
CCCCCCCCCCCA

1 �K�N21��

0
BBBBBBBBBBB@

T
�N21�
1

T
�N21�
2

...

T
�N21�
N21

T
�N21�
N

1
CCCCCCCCCCCA

. (6)
The kernel �K�N21�� is a matrix operator whose ele-
ments consist of t

�N21�
j ; j � 1 · · · N . From Eq. (2)

it is clear that t
�N21�
j can also be expressed in terms

of the transition operators of the N 2 2 interacting
subsystems as t

�N21�
j �

PN21
kfij T

�N22�
k . The operators

T
�N22�
k are deduced from Eq. (6) with N being replaced

by N 2 1.
From the relation G�N� � G0 1 G0T �N�G0 we conclude
that the Green operator of the interacting N particle system
has the form G�N� � G0 1

PN
j�1 G

�N21�
j . The operators

G
�N21�
j are related to the Green operators g

�N21�
j of the

systems in which only N 2 1 particles are correlated by
virtue of ũ

�N21�
j . This interrelation is given via
1

2

34

5

6 1

2

34

5

6 1

2

34

5

6

= + +

1

2

34

5

6

+U(6) (5)
 1u (5)

 2u (5)
 3u~ ~ ~

1

2

34

5

6 1

2

34

5

6

+ +

1

2

34

5

6

(5)
 4u (5)

 5u (5)
 6u~~~

FIG. 1. A pictorial interpretation of the total potential expansion (1) for six interacting particles enumerated and marked by the
full dots at the corners of the hexagon. The hexagon indicates the full potential U�6� of the six correlated particles. Each pentagon
symbolizes the full five body potential ũ

�5�
j � �u�5�

j ��4 of those five particles that are at the corners of the pentagon. The particle
being not at a corner of a pentagon is free (disconnected).
4037



VOLUME 85, NUMBER 19 P H Y S I C A L R E V I E W L E T T E R S 6 NOVEMBER 2000
FIG. 2. A diagrammatic representation of Eq. (4) for a system
of six correlated particles (cf. Fig. 1). The hexagons and the
pentagons (with a specific orientation) label the same potentials
as explained in Fig. 1. Each of the pictures stands for a transition
operator of the six body system (the particles are labeled by
straight lines). For example, the diagram T

�5�
1 means that the five

particles 2, 3, 4, 5, and 6 interact first, propagate, and then all six
particles interact with each other. The system then propagates
and finally the five particles 2, 3, 4, 5, and 6 interact again.
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, (7)

where �K̃�N21�� � G0�K�N21��G21
0 . From Eqs. (6) and (7)

we conclude that if the Green operator of the interacting
N 2 1 body system is known the Green operator of the N
particles can then be deduced by solving a set of N linear,
coupled integral equations [namely, Eqs. (6) and (7)]. Ac-
cording to the above equations, if only the solution of the
N 2 M problem is known where M � 1, 2, . . . , N 2 2
we have to perform a hierarchy of calculations starting by
obtaining the solution for the N 2 M 1 1 problem and re-
peating the procedure to reach the solution of the N body
problem. For N � 3 the present scheme reduces to the
well-established Faddeev equations.

As an example we apply the method to the four body
problem. This is particularly instructive, for a substantial
body of knowledge on the three particle problem has been
accumulated whereas theoretical studies on the four body
problem are still scare. Moreover, an impressive amount
of experimental data is available [4–8,10] that renders
possible a detailed insight into the four body continuum
4038
spectrum. Therefore, using the present method, we express
the four body Green operator in terms of known, approxi-
mate solutions of three body systems. For N � 4 the first
iteration of Eq. (7) yields

G�4� �
4X

j�1

g
�3�
j 2 3G0 , (8)

where g
�3�
j is the Green operator of the interacting three

body system (particle j is noninteracting) and can be
taken from other numerical or analytical studies. For
example, it has been shown recently [17] that, under
certain conditions specified in Ref. [17], the Hamiltonian
of a general three body system reduces to a sum of
three commuting Hamiltonians h

�2�
k in which only two

particles are interacting (particle k is free). The Green
operators g

�3�
j in Eq. (8) can therefore be written as

g
�3�
j � G22

0
Q

kfij g
�2�
k , k [ �1, 2, 3, 4� ] j where g

�2�
k is

the resolvent of h
�2�
k . Thus we obtain from Eq. (8) G�4� �

�
P4

j�1 G22
0

Q
kfij g

�2�
k � 2 3G0, j fi k [ �1, 2, 3, 4�. In

many situations it is possible to encompass in the ref-
erence Hamiltonian G0 valuable and easily accessible
preknowledge of the system which reduces the number of
interactions in the potential (1). For example, we consider
here the continuum dynamics of three electrons (or two
electrons and a positron) in the Coulomb field of a heavy
nucleus. Such a state is achieved following the electron
and positron impact double ionization. As a reference we
choose G0 to be the Green operator of the three continuum
particles moving independently in the Coulomb nuclear
field. What remains in the potential (1) is then the in-
teraction among the continuum particles which is treated
according to the present method. Figures 3(a) and 3(b)
show the results for the electron and the positron impact
double ionization of ground state helium along with the
experimental data [5,10] and a full numerical evaluation
of the first Born term within a convergent close coupling
(CCC) method [18]. The first Born approximation (FBA)
corresponds to one term in Eq. (8) where the projectile
motion is decoupled from the rest of the system. Thus, the
results of the FBA are insensitive to the projectile charge
state. The origin of the main peaks in the FBA spectrum
has been unraveled in Ref. [10]. Thus we focus here on
the novel additional structures predicted by the present
theory. From Figs. 3 and 4 the following important
implications are inferred: (i) The difference between
the positron and the electron impact case indicates that
the Born limit is not yet reached. We note that at such
a high impact energy and a small momentum transfer
as considered in Fig. 3 and 4 the Born limit is usually
achieved in single ionization. This emphasizes the funda-
mental difference between single and double ionization
as the latter having much higher ionization threshold and
being basically correlation induced. (ii) The Born (and
the optical) limit is approached differently depending on
the emission angles and energies of the ejected electrons.
(iii) In the author’s view, the most remarkable prediction
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FIG. 3. The fully resolved double ionization cross section of
He(1Se) following electron (solid lines) or positron (dotted line)
impact. The scattering geometry is shown by the inset in
(d). k0 and k1 are the initial and final state momenta of
the projectile while k2 and k3 refer to the momenta of the
two ejected electrons. The incident energy is 5.6 keV and
k2

2�2 � k2
3�2 � 10 eV. All angles are measured with respect

to k̂0. The projectile is scattered through an angle of 0.45±. The
emission angle u2 of one of the electrons is fixed at the value
indicated on the figures while the cross section is scanned as a
function of the emission angle u3 of the second electron. The
thick solid (dotted) line is the result of the present model for
electron (positron impact) whereas the light solid curve is the
outcome of the CCC method within the first Born approximation
[18]. The data (full square [10]) are on absolute scale.

of the present calculations is the presence of additional
subsidiary peaks (in the spectrum shown in Figs. 3 and
4 which are absent in the FBA (CCC) results (cf. also
Ref. [10]). An optimistic observer can identify these
structures in the experimental data of Figs. 3(b), 3(e),
and 3(f). In Fig. 4, however, these peaks are clearly
observable. The origins of these peaks are interference
effects between the various terms in the sum (8) when
evaluating the cross sections. It is most interesting to
recall here that the appearance of such interference effects
in a Faddeev-type approach to Coulomb scattering prob-
lems [19] has been considered hitherto as a drawback and
has not been confirmed experimentally [19]. The present
study which is in the spirit of the Faddeev theory together
with the notable agreement with experiment sheds a new
light on Faddeev-type approaches as a useful route to
few-body systems with long range correlations. In spite
of this exciting result it should be noted that only the first
iteration of (7) is used for the calculation of Figs. 3 and 4.
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FIG. 4. The same as in Fig. 3 with the same labeling of curves,
however the ejection energies are lowered to k2

2�2 � k2
3�2 �

4 eV. For shape comparison, the experimental data have been
normalized by a single factor to the present theory.

The evaluation of higher order terms should remove the
remaining discrepancies between theory and experiment.
The compactness of the kernel of the integral equation
(7) for Coulomb potentials is the subject of current
research [20].
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