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Minimization Methods for the One-Particle Dirac Equation
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Taking into account relativistic effects in quantum chemistry is crucial for accurate computations
involving heavy atoms. Standard numerical methods can deal with the problem of variational collapse
and the appearance of spurious roots only in special cases. The goal of this Letter is to provide a general
and robust method to compute particle bound states of the Dirac equation.

PACS numbers: 31.30.Jv, 02.60.Cb, 03.65.Pm, 31.15.Pf
The free Dirac operator has a negative continuum in
its spectrum. This causes a variational instability which
makes the numerical computations of one-particle bound
states of Dirac equations difficult. Various approaches
based, for instance, on squared Dirac operators [1,2],
min-max formulations [3,4], special basis [5,6], or even
more elaborate methods have been proposed [7,8], as
well as perturbative expansions of nonrelativistic models
and derivation of effective Hamiltonians. None of these
remedies provides a complete and satisfactory answer.
From a numerical viewpoint, the variational collapse
and the existence of spurious states [9,10] are serious
problems which were solved in special cases by taking
appropriate projections or imposing additional conditions,
for instance, on the boundary [5].

Here we propose exact and stable variational methods.
We present an abstract min-max approach and show how
to reduce it to a constrained minimization problem. The
method requires no specific precaution and allows, for in-
stance, the presence of several nuclei. It is then illustrated
by three computations of the ground state for a particular
class of spherical potentials: a shooting method (specific to
the case of spherical potentials), which is compared with a
minimization method under constraint (see Table I), and a
direct minimization method based on a decomposition on
a general basis (see Table II), which is equivalent to the
minimization method but has a form which is closer to the
min-max formulation and is easier to generalize to non-
central potentials.

To compute the bound states of the one-particle Dirac
Hamiltonian

H � a ? �2i=� 1 mc2b 1 V , (1)

where a and b are the usual Dirac-Pauli matrices, it
is natural to characterize the energy levels of H by
min-max methods applied to the Rayleigh quotients
�w, Hw���w, w�. Indeed, with the spectrum of the
Dirac Hamiltonian H being unbounded from below, it is
hopeless to just minimize the Rayleigh quotient without
any further precaution, since this would take us to 2`.
We refer to Refs. [11–15] for a mathematical study of
min-max formulations. In [15] it was proved for a large
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class of potentials that, if F1 © F2 is an orthogonal
decomposition of a well-chosen space of smooth square
integrable functions, the sequence of min-max levels

lk � inf
G subspace of F1

dimG�k

sup
w[�G©F2�

wfi0

�w, Hw�
kwk2 (2)

is equal to the sequence of the energy levels of H (counted
with multiplicity) in the interval �2mc2, 1mc2�.

This expression has, however, not much practical in-
terest and we will now reformulate it as a minimization
problem (see [13] for mathematical justifications). Com-
posing H with its associated positive energy projector L1

would allow one to minimize Rayleigh quotients but this
idea is formal since the above projector is a priori un-
known. Instead we will introduce a (nonlinear) constraint
which implicitly defines the projector. The Dirac equation
Hc � lc , originally written for 4-spinors, is first reduced
to an equivalent equation for 2-spinors: the lower 2-spinor,
or small component, is written in terms of the large com-
ponent (see [6,16]). More precisely, for any c with values
in �4, let us write c � �w

x �, with w, x taking values in �2.
Then the equation Hc � lc is equivalent to the system(

Lx � �l 2 mc2 2 V �w
Lw � �l 1 mc2 2 V �x (3)

with L � ic� �s ? �=� �
P3

k�1 icsk≠�≠xk , sk being the
Pauli matrices �k � 1, 2, 3�. As long as l 1 mc2 2 V fi

0, the system (3) can be written as

L

µ
Lw

gE

∂
1 Vw � Ew, x �

Lw

gE
, (4)

where gE � E 1 2mc2 2 V , E � l 2 mc2.
Then, system (3) written for f � w�pgE reads

HEf � �E 2 V � �E 1 2mc2 2 V �f , (5)

where the operator HEf :�
p

gE L��� 1
gE

L�pgE f���� is sym-
metric (and self-adjoint for an appropriate domain). Thus
E is a solution of �f, f�E2 1 2���f, �mc2 2 V �f���E 2

���f, �2mc2 2 V �Vf��� 2 �f, HEf� � 0,
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E � J6�E, f�

:�
1

�f, f�
�6

p
D�E, f� 2 ���f, �mc2 2 V �f���� , (6)

where D�E, f� :�j�f, Vf�j2 1 �f, f� �m2c4�f, f� 1

�f, HEf� 2 �f, V 2f��. Heuristically Eq. (6) is one of
the analogs in quantum mechanics of Einstein’s relation:
E � 6�p2c2 1 m2c4�1�2 2 mc2 1 V .

It turns out that the critical points of J6�E, f� under
the constraint E � J6�E, f� are exactly (see [13]) the
bound states of the Dirac operator H corresponding to
energies in the gap (and those corresponding to J1 con-
verge as c ! 1` to the nonrelativistic energy levels of
the Schrödinger operator). Note that if V is nonpositive
the range of J2 is contained in �2`, 2mc2� which corre-
sponds to the negative part of the continuum of the spec-
trum of the Dirac operator. We may in that case define the
ground state as the lowest energy level in the gap, which
turns out to be the minimum of J1�E, f� under the con-
straint E � J1�E, f�.

The functional J1 is well defined only if further condi-
tions are assumed on the potential. If, for instance, V �
z

jxj is the Coulomb potential, z �
Ze2

h̄c has to be less than
1 (which means Z , 1�a � 137.036 . . .), otherwise H is
not well defined as a self-adjoint operator (see [13,15,17]
for more details). The fact that the whole spectrum in
the gap is actually characterized by J6 comes from the
equivalence of the method with the min-max characteriza-
tion of the energy levels in the gap [15].

If V is spherically symmetric (see Refs. [17,18]) the
bound states can be expressed in terms of the spherical
harmonics using partial wave Dirac operators acting on the
space ���L2�0, 1`����2 of the square integrable real functions
on �0, 1`�, which have the form

h �

√
mc2 1 V 2c

d
dr 1

ck

r

c
d
dr 1

ck

r 2mc2 1 V

!
�k � 61, 62, . . .� .

(7)

From now on, we choose a system of units in which m � 1
and c � 1. Problem (3) takes the form(

u0 � �1 1 l�y 2 �Vy 1
k

r u�
y0 � �1 2 l�u 1 Vu 1

k

r y� . (8)

The solutions of this system are characterized by two pa-
rameters, l and d � y�1��u�1�, and we shall denote by
X the set of the solutions of (8) such that u�1� � 1 when
l and d vary. However, the condition that u and y are
in L2�0, 1`� determines l and d. One can show that this
condition is equivalent to assuming that

lim
r!01

r���ju�r�j2 1 jy�r�j2��� � 0,

lim
r!1`

���ju�r�j2 1 jy�r�j2��� � 0 ,
(9)

thus providing us with a first numerical shooting method to
determine l and d (this is of course valid only for spheri-
cally symmetric potentials). We shall refer to this method
by the letter, s, and use it as a comparison test for the
numerical results obtained by the minimization approach
given below. The approximated energy levels computed
with this method will therefore be denoted by ls in Table I.

Let us describe now the minimization method based on
J1. Similar to (4), y can be eliminated in terms of u:

y

rk
� �r2k�1 1 l 2 V ��21 d

dr
�rku� . (10)

We are looking for the ground state so we may choose
k � 21, and problem (8) is now equivalent to solving

hlf � �1 1 l 2 V � �1 2 l 1 V �f , (11)

where hl is formally a self-adjoint operator:

hlf �
p

1 1 l 2 V
d
dr

3

∑
r2

1 1 l 2 V
d
dr

�
p

1 1 l 2 V f�
∏

(12)

and f�r� � r21u�r��
p

1 1 l 2 V is now a function de-
fined in �0, 1`�. Equation (5) is then equivalent to

�f, f�l2 2 2�f, Vf�l 1 �f, V 2f� 2

�kfk2 1 �f, hlf�� � 0 , (13)

where �., .� is the usual scalar product in L2�0, 1`� and
k · · · k is the corresponding norm. The problem is then
reduced to finding a critical point of J1�l 2 1, . . .� with
l 2 1 � J1�l 2 1, f� and

J1�l 2 1, f� 1 1 �

p
D�l 2 1, f� 1 �f, Vf�

kfk2 , (14)

D�l 2 1, f� � �f, Vf�2 1 kfk2

3 ��f, hlf� 1 jjfk2 2 �f, V 2f�� .
(15)

To solve this constrained problem numerically, the
natural idea is to introduce a penalization method and to
minimize J1�l 2 1, f� 1 Aj�l 2 1� 2 J1�l 2 1, f�j2
for A large enough. Actually, if we assume that f

is given by (12) with �u, y� in X, the condition that u
and y are in L2�0, 1`� is equivalent to assuming that
the integrals involved in (14) are finite. Of course
these integrals are numerically computed on an in-
terval �e, R� and the approximate value J1

e,R of J1

is finite even if the constraint is not satisfied, but we
observe that lim�e,R�!�0,1`�J

1
e,R�l 2 1, f� � 1` unless

l 2 1 � J1�l 2 1, f�. A minimization of J1 (numeri-
cally, of J1

e,R) on the set X without constraint is therefore
equivalent to a constrained minimization of J1. This
method will be referred by the letter, m, in Table I, which
contains the results of our computations using both the
shooting and minimization methods described above.
The set of functions over which the approximated energy
levels are computed consists of all of the solutions of (8),
with d and l to be determined. Once this is done, as a
4021
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by-product of the above minimization method, the wave
functions associated with the computed energy levels are
given by (8). This is also true for the shooting method.

The main advantage of the minimizing setting described
above is that it can be extended to nonsymmetric situations
(noncentral potentials), but of course for a minimizing set
which is larger than X. Indeed, above we have minimized
J1 only among the set of functions which are already so-
lutions of a radially symmetric system (8). In the rest of
this Letter, for convenience, we still assume that the po-
tential is radial, but consider a general basis of L2�0, 1`�
and introduce a third formulation, which is intermediate
between the abstract min-max theory and the minimiza-
tion of J1 described above. Its main advantage is that the
constraint E � J1�E, f� will be automatically satisfied.
We will therefore call this method the direct minimization
method.

As in Eq. (4) we may rewrite (3) as

x � �l 1 mc2 2 V �21Lw , (16)

L

µ
Lw

l 1 mc2 2 V

∂
� �l 2 mc2 2 V �w , (17)

at least for any l [ � 2mc2, 1mc2� if V takes negative
values. By multiplying Eq. (17) by w and integrating with
respect to x [ �3, we get

fw�l� :�
Z jLwj2

l 1 mc2 2 V
dx

� �l 2 mc2� kwk
2
L2 2

Z
V jwj2 dx =: gw�l� .

(18)

Since, for a given w, fw�l� is decreasing and gw�l� is
increasing, if there exits a l � l�w� such that (18) is
satisfied, then it is unique (the existence of such a l for all
u depends on the properties of the potential V ). According
to [15], for those V ’s, the ground state is such that

l1 � min
w

l�w� . (19)
4022
For a radial potential we may use the radial Dirac equa-
tion and consider (8) instead of (3). For m � 1 and c � 1,
l � lr �u� is then the unique solution of

f�l� �
Z 1`

0

j�rku�0j2

r2k�1 1 l 2 V �r��
dr

� �l 2 1�
Z 1`

0
ju�r� j2 dr 2

Z 1`

0
V �r�ju�r�j2 dr .

(20)

To solve it numerically, it is more convenient to rewrite
f�l� as

f�l� �
1X̀
k�0

"
�21�k

Z 1`

0

r22kj�rku�0j2

�1 2 V �r��k11 dr

#
lk . (21)

The solution (with k � 21) is then approximated on a
finite basis �ui�i�1,2,...,n: u �

Pn
i�1 xiui . If

fijk � �21�k21
Z 1`

0

r2�ui�r�0�uj�r�0

�1 2 V �r��k
dr (22)

and

Vij �
Z 1`

0
ui�r�uj�r�V �r� dr , (23)

the approximating equation for l corresponding to (18) is
nX

i,j�1

"√
mX

k�1

fijklk21

!
1 Vij

#
xixj 1

�1 2 l�
nX

i�1

x2
i � 0 ,

where the series in l has been truncated at order m. It is
actually more convenient to define

An,m�l� �

"√
mX

k�1

fijklk21

!

1 �1 2 l�dij 1 Vij

#
i,j�1,2,...,n

and to approximate l1 by l
n,m
1 defined as the first
TABLE I. Comparison of the shooting (s) and minimization (m) methods for k � 21, m � c � 1, V �r� � 2zr2b , z � 0.5, and
b [ �0, 1�. The system (8) is numerically solved with a stepsize adaptive Runge-Kutta method on the interval �e � 1024, R � 15�.
For the shooting method we minimize the quantity e���ju�e�j2 1 jy�e�j2��� 1 u���ju�R�j2 1 jy�R�j2��� � Ds for some scale parameter
u . 0 (which is chosen to balance both boundary terms), while for the minimization method the quantity J1�l 2 1, f� is directly
minimized, the quantity jJ1�l 2 1, f� 2 �l 2 1�j2 being computed a posteriori at l � lm. For b � 1, the result is known
explicitly: l1 � �1 2 z 2�1�2 � 0.866025 . . ., d1 � 2��1 2 l���1 1 l��1�2 � 20.267949 . . . .

b ds dm ls lm J1 j�lm 2 1� 2 J1�lm 2 1, f�j2 Ds

1 20.267954 20.267943 0.866034 0.866013 0.866014 1.8 3 10212 0.00029
0.9 20.235187 20.235174 0.856725 0.856698 0.856698 2.1 3 10214 0.00053
0.8 20.207802 20.207788 0.843181 0.843146 0.843146 5.2 3 10214 0.00063
0.7 20.183397 20.183379 0.825877 0.825832 0.825831 4.3 3 10213 0.00076
0.6 20.160651 20.160627 0.804699 0.804639 0.804639 4.1 3 10213 0.00094
0.5 20.138654 20.138619 0.779161 0.779071 0.779070 3.4 3 10213 0.0012
0.4 20.116645 20.116584 0.748381 0.748221 0.748220 3.8 3 10213 0.0018
0.3 20.0938375 20.0937016 0.710904 0.710537 0.710536 3.5 3 10213 0.0049
0.2 20.069224 20.068798 0.664252 0.663067 0.663067 2.4 3 10213 0.0097
0.1 20.0412322 20.0392963 0.60391 0.59833 0.59833 1.4 3 10213 0.018
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TABLE II. Direct minimization method for k � 21, m � c � 1, V �r� � 2zr2b , z � 0.5,
and b close to 1. The approximating space is of dimension n � 10 (we consider the orthonor-
mal basis generated by the ground state of the hydrogen atom and n 2 1 Hermite functions,
which is probably not very well adapted) and the series are truncated at m � 14 or m � 15
(the corresponding values l

10,14
1 and l

10,15
1 are, respectively, a lower and an upper bound of

limm!1`l10,m
1

). This last approximation is certainly rather crude, as shown by the case of the
Coulomb potential. As in Table I, J1 is obtained through a minimization on the set X, and
Dm :� �1 2

P10
i�1 �um, ui�2�1�2 measures the error (in the L2 norm) when the corresponding

solution is approximated on the finite basis.

b 0.90 0.93 0.95 0.97 0.99 1.00

l
10,14
1 0.855681 0.858516 0.860228 0.861792 0.863200 0.863843

l
10,15
1 0.858012 0.861112 0.863004 0.864749 0.866338 0.867071

J1 0.856698 0.859984 0.861954 0.863735 0.865310 0.866014
Dm 0.0082 0.0058 0.0046 0.0033 0.0020 0.0022
positive root of l � m���An,m�l����, where m�A� denotes
the first eigenvalue of the matrix A (see [15] for more
details). Note that �ln,m

1 �m$1 is an alternating sequence
(which essentially converges at a geometric rate): two
consecutive eigenvalues determine an interval containing
limm!1`l

n,m
1 . Numerical results for a special basis are

given in Table II, with two types of approximations: a
finite basis with n elements is used and the series in
powers of l is truncated at a finite order m.

Regarding excited states, they can be obtained by the
first and second methods (shooting and minimization),
with k fixed to values different from 21 and for appro-
priate values for the quantum numbers corresponding to
the decomposition into spherical harmonics. In the case
of the direct minimization method, the computation of ex-
cited states is more straightforward. It is indeed reduced
to the computation of the ith root of l � mi���An,m�l����,
where mi�A� denotes the ith eigenvalue of A.

In this Letter we have proved that computations of one-
particle bound states based on a variational formulation of
the Dirac equation are not subjected to the numerical diffi-
culties due to the negative continuum of the spectrum, thus
showing the possibility of a mathematical foundation for
such numerical methods. These computations are general,
robust, and not restricted to central potentials. Optimal nu-
merical accuracy has not been our primary concern, since
we were interested rather in showing the feasibility of an
approach based on the variational structure of the equation.
Hopefully, this new approach will contribute to the elabo-
ration of more efficient and consistent numerical methods.
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