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Geometric Chaoticity Leads to Ordered Spectra for Randomly Interacting Fermions
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A rotationally invariant random interaction ensemble was realized in a single-j fermion model. A
statistical approach reveals the random coupling of individual angular momenta as a source for the
empirically known dominance of ground states with zero and maximum spin. The interpretation is
supported by the structure of the ground state wave functions.

PACS numbers: 24.60.Lz, 05.30.–d, 21.30.Fe, 21.60.Cs
The interplay of regular and chaotic features in many-
body quantum dynamics is extensively studied both for
simple models and for realistic applications to atomic,
nuclear, and condensed matter physics, as well as for
understanding properties of the QCD vacuum. Typical
“shell-model” systems such as complex atoms [1] and nu-
clei [2] are described by the mean field and correspond-
ing residual interaction. The density of the mean field
configurations grows exponentially so that the interaction
becomes effectively strong at sufficiently high excitation
energy leading to generic chaotic features both in spec-
tral statistics [3,4], and in properties of wave functions
[1,2]. Studies of finite many-body systems have to ac-
count for the existence of constants of motion such as total
angular momentum, isospin, and parity. Up to now, little
attention was paid to the correlations between classes of
states which are described by the same Hamiltonian but
belong to different values of exact integrals of motion. An
obvious and practically important example is angular mo-
mentum conservation in a finite Fermi system. For a suffi-
ciently large dimension, the majority of states corresponds
to a complicated quasirandom coupling of individual spins.
This “geometric chaoticity” is used in evaluating the level
density for a given J and plays an important role in the
response to external fields, large amplitude collective mo-
tion, dissipation, and so on. The similarity of different J
classes with respect to mixing was demonstrated [5,6] in
the nuclear shell model by the studies of complexity, occu-
pation numbers, strength functions and pairing properties.
This raises also a question of existence of compound rota-
tional bands [7] which would connect complicated states
having different J but almost the same mixing.

A new angle of looking at the problem was introduced
by Refs. [8,9] where the spectrum of a random but rota-
tionally invariant Hamiltonian was obtained for a shell-
model Fermi system. In spite of the random character
of the two-body interaction, the fraction f0 of the en-
semble realizations with a ground state spin J0 � 0 was
much higher than the total statistical fraction fs

0 of J � 0
states in shell-model space. This result was confirmed in
Refs. [10,11] as well as for the interacting boson model
[12] being very robust and insensitive to the details of the
0031-9007�00�85(19)�4016(4)$15.00
ensemble. A new regular feature discovered in [10,12]
was an excess of the probability fJmax for the ground state
to have the maximum possible spin Jmax. Below we show
that the geometric chaoticity provides a base for explain-
ing the main features of the pattern.

First we give a couple of trivial examples which point
out the possible source of the effects, namely, an ana-
log of the Hund rule in atomic physics. Consider a sys-
tem of N pairwise interacting spins with the Hamiltonian
H � A

P
afib sa ? sb � A�S2 2 Ns�s 1 1��. If the inter-

action strength A is a random variable with zero mean, then
the ground state of the system has equal, f0 � fSmax �
1�2, probabilities to have spin S � 0 or S � Smax (anti-
ferromagnetism or ferromagnetism). A similar situation
takes place in the degenerate pairing model where the pair
creation, P

y
0 , pair annihilation, P0, and particle number,

N , operators form an SU(2) quasispin algebra. Then the
eigenenergy is proportional to the pairing constant V0 (the
energy of a pair of fermions coupled to angular momentum
L � 0) so that, for a random sign of V0, the ground state
quasispin will be 0 (unpaired state of maximum seniority)
or maximum possible (fully paired state of zero seniority),
on average in 50% of the cases. In the SU(3) model as well
as in any model with a rotational spectrum Erot � J2�2I
the normal (inverted) bands will appear if the moment of
inertia I takes positive (negative) values randomly.

For simplicity we limit ourselves here to a case of N
identical fermions on a single-j shell which provides a
generic framework for the extreme limit of strong residual
interactions. Rotational invariance is preserved, so that all
single-particle m states are degenerate. Within this space,
the general two-fermion rotationally invariant interaction
can be written as

H �
X
LL

VLP
y
LLPLL , (1)

where the pair operators with pair spin L and its projection
L are defined as PLL �

1
p

2

P
mn CLL

mn anam, and C are the
Clebsch-Gordan coefficients. Because of Fermi statistics,
only even L values are allowed in the single-j space. This
fact was ignored in the attempt [8] to construct the ran-
dom quasiparticle ensemble with identical distributions of
© 2000 The American Physical Society
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the parameters VL in the particle-particle channel and the
parameters ṼK for the same interaction transformed to
the particle-hole channel, H �

P
Kk ṼK �aya�Kk�aya�Kk̃

(the relation between the interactions in the two chan-
nels was discussed long ago by Belyaev [13], and served
as a justification for an interpolating model “pairing plus
multipole-multipole forces”). Since K can take both even
and odd values, the number of parameters is different in
the two representations, and ṼK cannot be independent if
VL are.

Assuming that the constants VL are random, uncorre-
lated, and uniformly distributed between 21 and 1, we
get the distribution fJ of the ground state spin J0 shown
in Figs. 1(a) and 1(c) for N � 4 and N � 6 at different
values of j. We show by dotted lines the a priori distri-
butions fs

J based on the fraction of states of given J in
the entire Hilbert space for given N . The overwhelming
probability f0 shows the same phenomenon in the uniform
ensemble as observed earlier in Gaussian ensembles of VL

[8,9,11]. Further evidence of the dominance of J0 � 0
configurations is given by the example, Fig. 1(b), for an
odd number of particles, where excess of the ground state
spin J0 � j is evidently related to the ground spin J0 � 0
in the neighboring even system. The probability for the
maximum spin J0 � Jmax is also strongly enhanced.

The effect for J0 � 0 seems to exist already in a crude
approximation modeling fermionic pairs by bosons. The
commutation relations for the fermion pair operators are
(L and L0 are even)

�PL0L0 , P
y
LL� � dL0LdL0L 1 2

X
mm0n

CL0L0

m0n CLL
nm ay

mam0 .

(2)

The second term in (2) is of the order N�V where V is
the space capacity (� 2j 1 1 in our case). It is small for
a small number of fermions and for a nearly filled shell
(because of the particle-hole symmetry). For intermediate
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FIG. 1. The distribution of ground state angular momenta for
various systems of N fermions of spin j (a)–(c). The bosonic
approximation, fb

J , is in panel (d). The dotted lines in (a),(b),(d)
are the distribution of allowed J and the solid lines are the
ensemble results. In (c) the dashed line is for V0 � 0, i.e., no
pairing. In (e) we have f0 for N � 4 and different j; ensemble
results (solid line), statistical theory (dotted line). (f) is similar
to (e) with theoretical upper limit, dotted line, for fJmax .
occupation this term is not small but can be approximately
substituted by its mean value (the monopole part with spin
K � 0). Then, after a simple renormalization, PLL be-
come bosonic operators. This is the assumption used in
the original boson expansion techniques [14] and later in
the interacting boson models: fermionic pairs PLL are sub-
stituted by bosons bLL, and the Hamiltonian (1) becomes a
sum of random bosonic energies

P
LL vLnLL. The ground

state in each realization corresponds to the condensation
of the bosons into the single-boson states jLL� with the
lowest value of vL. For a given L, the many-boson states
with different J allowed for the condensate are degener-
ate, but the value L � 0 is singled out by the obvious fact
that for v0 � min all degenerate states have total spin
J � 0, while for the minimum boson energy vL at L fi 0
any specific value of J, including J � 0, appears only in
a small fraction of states. If all VL have the same dis-
tribution, we expect fb

0 � 1�k where k is a number of
(equiprobable) values of L. All other values J fi 0 appear
with small probabilities �1�k2. This is demonstrated by
Fig. 1(d) where the pattern is qualitatively similar to that
in Figs. 1(a) and 1(c). The bosonic effect gives only a part
(decreasing with increasing j) of the J0 � 0 dominance
observed for the fermions. Another argument against the
dominance of the bosonic correlations is given in Fig. 1(c):
after exact elimination of the monopole term (VL�0 � 0),
the picture does not significantly change although the value
V0 is now the lowest only in a small fraction, �22�k21�, of
all cases (when all VLfi0 are positive).

In our opinion, the main effect comes from the statistical
correlations of the fermions. They resolve the bosonic de-
generacy in favor of the J � 0 and J � Jmax ground states.
In the strong mixing among nearly degenerate states, the
eigenstates emerge as complicated chaotic superpositions.
The only constraints left are the conservation laws for the
particle number and total spin. The latter can be taken
into account by the standard cranking approach. Thus, we
model the system by the equilibrium Fermi gas with the oc-
cupation numbers nm of individual orbitals characterized
by the angular momentum projection m onto the cranking
axis. The presence of the constraints creates a “body-fixed
frame” and splits effective quasiparticle energies, although
instead of the collective rotation around a perpendicular
axis we have here a random coupling of individual spins
with the symmetry (cranking) axis being the only direction
singled out in the system [15]. Under the constraints

N �
X
m

nm, M �
X
m

mnm , (3)

equilibrium statistical mechanics leads to the Fermi-Dirac
distribution

nm � �exp�gm 2 m� 1 1�21 (4)

determined by the Lagrange multipliers of the chemical
potential m and cranking frequency g; in the end the total
projection M (equivalent to the K quantum number for
axially deformed nuclei) is identified with the total spin J .
4017
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The quantities m�N , M� and g�N , M� can be found di-
rectly from (3). At M � 0 we have g � 0, so that the
expansion in powers of g allows one to study the most
important region around M � 0; the power expansion
is sufficient for all M except for the edges. With no
cranking, one has the uniform distribution of occupancies
n0

m � n̄ � N�V. With the perturbational cranking, the
occupation numbers are

nm � n̄

∑
1 2 gm�1 2 n̄� 1

g2

2
�m2 2 	m2
� �1 2 n̄�

3 �1 2 2n̄� 1 · · ·

∏
. (5)
4018
Here 	m2
 � �1�V�
P

m m2 � j2�3, and terms of higher
orders are not shown explicitly. The expectation value of
energy in our statistical system can be written as

	H
 �
X

LLm1m2

VLjC
LL
m1m2

j2	nm1nm2
 . (6)

Neglecting the correlations between the occupation num-
bers, 	nm1nm2
 � nm1nm2 , we use the statistical result (5)
and calculate the geometrical sums with the Clebsch-
Gordan coefficients. Expressing the parameter g in terms
of the total spin M ! J, we come to the result including
the terms of the second order in J2,
	H
N ,J �
X
L

�2L 1 1�VL�h0�L� 1 h2�L�J2 1 h4�L�J4� , (7)

h0�L� � n̄2, h2�L� � 3�L2 2 2j2��2j4V2, (8)

h4�L� �
9
40

�1 2 2n̄�2�3L4 1 3L2 2 12j2L2 2 6j2 1 8j4�
�1 2 n̄�2N2V2j8 . (9)
The terms h0 and h2 can be also found directly from the
K � 0 and K � 1 components of the interaction (1) in the
particle-hole channel.

J0 is determined by the ensemble distributions of
h2,4 �

P
L�2L 1 1�VLh2,4�L�. For all realizations of the

random interaction with h2 $ 0 and h4 . 0, the ground
state has spin J0 � 0. If h2 . 0 but h4 , 0, one has
a local energy minimum at J � 0 although there
is a possibility to reach the absolute minimum at
Jmax � �1�2�N�V 2 N�. This will not happen if at
J � Jmax we still have h2 1 J2

maxh4 . 0. Therefore the
probability to have J0 � 0, equals, in this approximation,
to the integral of the probability P �h2, h4� over the region
h2 . 0, h4 . 2�h2�J2

max�. Since h4 is small, the result is
close to that for the semiplane h2 . 0, and f0 is close to
50%. For a Gaussian distribution of the parameters VL

with zero mean and variances sL, the distribution of
the linear combinations h2,4 is again Gaussian, and the
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FIG. 2. Mean values of the interaction parameters 	VL
, for
ground states with spin Jmax in the N � 6, j � 17�2 system;
numerical simulations (solid line), statistical model predictions
(dashed line).
integral gives

f0 �
1
4

1
1

2p
arctan

"
A24 1 A22�J2

maxp
A22A44 2 A2

24

#
, (10)

which is close to 1�2. Here we introduced the combina-
tions of geometric factors weighted with the corresponding
variances, Apq �

P
L hp�L�hq�L�s2

L.
The g expansion fails for large momenta. However,

the states with high M can be constructed exactly. For
Figs. 1(e) and 1(f) we used our statistical approach near
J � 0 in conjunction with the exact values in the end re-
gion J � Jmax to improve the above result for f0 and to get
an upper bound for fJmax . Certainly, statistical theory pre-
dicts smooth average behavior only; irregularities of fJ� j�
should be considered separately. Figure 2 shows that the
subset of the values of VL leading, according to statistical
theory, to J0 � Jmax agrees well with the empirical data.

Figure 3(a) shows a strong correlation of actual ground
state energies E0 for specific realizations of the ensemble
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FIG. 3. Ground state energies E0 for J0 � 0 (a) and J0 �
Jmax (b) vs predictions of the statistical model, Eq. (7).
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FIG. 4. The distribution of overlaps of J0 � 0 ground states of
the degenerate pairing model (V0 � 21, VLfi0 � 0) with those
for (a) random ensemble of VLfi0 and V0 � 21, (b) random
ensemble of all VL; N � 6 and j � 11�2 in both cases, and the
dotted histogram is the predicted P�x�.

with statistical predictions (7). In the case of J0 � 0, E0
differs from h0 � n̄2

P
L�2L 1 1�VL essentially by a con-

stant negative shift. This nonstatistical effect, as well as
the distribution of gaps in the energy spectrum and other
regularities found in [9] and confirmed by our calculations,
is presumably due to the regular part of the dynamics re-
lated to 	V 2

L
. The simplest description of this part can be
reached with the aid of the boson expansion technique [14]
and corresponds in fact to boson pairing. For J0 � Jmax,
Fig. 3(b), the ground state energy (7) is in one-to-one cor-
respondence to the statistical predictions although the slope
differs slightly from unity because of the use of the g ex-
pansion. We hope to return to the discussion of nonstatis-
tical phenomena elsewhere.

Although the energy spectra with random two-body
interactions bear clear resemblance to the ordered
spectra of pairing forces [9], the structure of the eigen-
states is close to that expected for chaotic dynamics
[10]. Figure 4(b) shows the distribution P�x� of the
overlaps x � j	J � 0, g.s.j0, p
j2 of ground states with

spin 0 obtained in the random ensemble with the ground
state j0, p
 for the degenerate pairing model, the latter
corresponding to the case of fixed V0 � 21, VLfi0 � 0.
In the chaotic limit the wave functions are expected
[4] to behave as random superpositions of basis states
with uncorrelated components C uniformly spread over
a unit sphere, P�C� ~ d�

P
C2 2 1�. This is equiva-

lent to the distribution of a single component P�C1� ~

�1 2 C2
1��d23��2 where d is the space dimension. For

d ¿ 1, the distribution P�C1� is close to Gaussian
whereas the overlaps x � C2

1 obey the Porter-Thomas
distribution. In the case of Fig. 4 (N � 6, j � 11�2)
the dimension of the J � 0 space is small, d � 3, so
that P�C1� is constant, and we expect P�x� ~ 1�

p
x.

Another case, Fig. 4(a), corresponds to the overlap of
j0, p
 with the actual ground state for V0 � 21, VLfi0
random. Of course, here the completely paired state can
appear as the ground state even for random strengths in
the channels L fi 0 which gives the peak at the overlap
x ! 1. But the character of the distribution changes as
well becoming effectively two dimensional: for d � 2,
P�x� ~ 1�

p
x�1 2 x�. This does not contradict the

enhancement [9] of pair transfer between the adjacent
ground states which is similar to the compound rotational
band [7] in N space (“gauge rotation”).

To conclude, we have shown that statistical correlations
of fermions in a finite system with random interactions
drive the ground state spin to its minimum or its maxi-
mum value. The effect is universal being related to the
geometric chaoticity of the spin coupling of individual
particles. This means that the dominance of 01 ground
states in even-even nuclei may at least partly come from
incoherent interactions rather than solely from coherent
pairing. The structure of ground states with an “anti-
ferromagnetic” ordering, J0 � 0, is compatible with the
predictions for chaotic dynamics. Quantitative relations
between the geometric chaoticity and pure dynamic effects
in finite many-body systems should be an interesting sub-
ject for further detailed studies.
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