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Phenomenological Evidence for Gluon Depletion in pA Collisions
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The data of J�c suppression at large xF in pA collisions are used to infer the existence of gluon
depletion as the projectile proton traverses the nucleus. The modification of the gluon distribution is
studied by use of a convolution equation whose nonperturbative splitting function is determined phe-
nomenologically. The depletion factor at x1 � 0.8 is found to be about 25% at A � 100.

PACS numbers: 24.85.+p, 25.40.Ve
It is conventional in the study of J�c production in
heavy-ion collisions that the gluon distribution before the
hard subprocess of cc̄ production is assumed to be the
same as in a free nucleon [1–3]. The unconventional view
that the gluon distribution can be modified in the nuclear
medium due to depletion was suggested in [4]. In this
paper we focus on p-A collisions and show that the data
[5] on a�xF� can be used to infer that gluon depletion in
the projectile proton is not negligible.

Charmonium absorption in pA collisions has been stud-
ied in [6,7] without finding any satisfactory explanation for
the xF dependence of a�xF�. In [8] the effect of energy
loss of partons is considered, but that is only one aspect
of gluon depletion. Here we pay particular attention to the
evolution of the gluon distribution of the projectile as it tra-
verses the nucleus. The approximate absence of dilepton
suppression and the consequent implication that the quark
distribution is nearly unaltered by the nuclear medium lead
some to expect that the gluon distribution would be unal-
tered also. However, such a view is based on the validity of
Q2 evolution of the parton distribution functions [9]. We
adopt the reasonable alternative view that the evolution in a
nucleus is different from that of perturbative QCD (pQCD)
at high Q2; indeed, we shall let the data guide us in deter-
mining the proper dynamics of the low-Q2 nonperturbative
process.

The Fermilab E866 experiment measured the J�c sup-
pression in p-A collisions at 800 GeV�c with a wide cov-
erage of xF [5]. The result is given in terms of a�xF�,
which is defined by the formula

R�xF , A� � sA�xF��AsN �xF� � Aa�xF �21, (1)

where sN ,A is the cross section for J�c production by a
proton on a nucleon �N� or on a nucleus �A�. In [5] a
parametrization of a�xF� for J�c production is given by

a�xF� � 0.952�1 1 0.023xF 2 0.397x2
F� (2)
0031-9007�00�85(19)�4008(4)$15.00
for 20.1 , xF , 0.9. It is our aim here to explore
the implication of Eq. (2) on the evolution of the gluon
distribution.

Since the semihard subprocess of g 1 g ! c 1 c̄ is
common for p-N and p-A collisions, they cancel in the
ratio R�xF , A� so the xF dependence can come from three
sources: (a) the ratio of the gluon distribution in the pro-
jectile passing through a nucleus to that in a free proton,
G�xF , A�, (b) nuclear shadowing of gluons in the target,
N�xF , A�, and (c) hadronic absorption of the cc̄ states after
the semihard subprocess, H�xF , A�. Putting them together,
we have

R�xF , A� � G�xF , A�N�xF , A�H�xF , A� . (3)

G�xF , A� and N�xF , A� are ignored in [6,7]. Since xF ,

0.25 in [6], there is not much dependence on xF to be as-
cribed to H�xF , A�, but in [7], where the full range of xF is
considered, H�xF , A� is forced to carry the entire xF depen-
dence by a fitting procedure, resulting in an unreasonably
short octet lifetime. Our approach by including G�xF , A�
and N�xF , A� in Eq. (3) is therefore complementary to the
work of [6,7].

The nuclear shadowing problem has been studied
in detail by Eskola et al. [10,11], using the deep in-
elastic scattering data of nuclear targets at high Q2.
On the basis of leading-order pQCD evolution they
can determine the parton distributions at any Q2 .

2.25 GeV2. The results are given in terms of numer-
ical parametrizations (called EKS98 [11]) of the ratio
NA

i �x, Q2� � fi�A�x, Q2��fi�x, Q2�, where fi is the par-
ton distribution of flavor i in the free proton and fi�A is that
in a proton of a nucleus A. We shall be interested in the
ratio for the gluon distributions only at Q2 � 10 GeV2,
corresponding to cc̄ production, and denote it by N�x, A�.
From the numerical output of EKS98 we find that a simple
formula can provide a good fit to within 2% error in the
range 40 , A , 240 and 0.01 , x , 0.12; it is

N�x, A� � Ab�x�, (4)
© 2000 The American Physical Society
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where

b���j�x���� � j�0.0284 1 0.0008j 2 0.0041j2� , (5)

with j � 3.912 1 lnx. Thus the A dependence is minimal
at j � 0, corresponding to x � 0.02.

The variable x in Eq. (4) is the gluon momentum frac-
tion in a nucleon in the nucleus, usually referred to as x2.
Both xF in Eq. (1) and x2 in Eq. (4) are to be converted to
the x1 variable for the projectile nucleon, using

xF � x1 2 x2, x1x2 � t � M2
J�c�s , (6)

so that a part of Eq. (3) can be rewritten as

R�xF , A��N�x2, A� � Aa���xF �x1����2b���x2�x1����21. (7)

In our approach we treat H�xF , A� as having negligible
dependence on xF for all xF . Attempts [6,7] to find that
dependence have failed and led to the suggestion of the ex-
istence of an unaccounted mechanism responsible for the
enhanced suppression in R�xF , A� at large xF . In our view
that mechanism is gluon depletion. Of course, if the xF

dependence of H�xF , A� were independently known, its in-
corporation in our analysis is straightforward. For us here,
we identify the x1 dependence of G�x1, A� in Eq. (3) with
that in Eq. (7), which is completely known, and proceed
to the study of the phenomenological implication on gluon
depletion.

In the spirit of pQCD evolution, even though the ef-
fect of a nuclear target on the projectile gluon distribution
is highly nonperturbative, we now propose an evolution
equation on the gluon distribution g�x, z�, where z is the
path length in a nucleus. For the change of g�x, z�, as the
gluon traverses a distance dz in the nucleus, we write

d
dz

g�x, z� �
Z 1

x

dx0

x0
g�x0, z�Q

µ
x
x0

∂
, (8)

where Q�x�x0� describes the gain and loss of gluons in
dz, but unlike the splitting function in pQCD, it cannot be
calculated in perturbation theory. Equation (8) is similar to
the nucleonic evolution equation proposed in [12], except
that this is now at the parton level. Instead of guessing the
form of Q�x�x0�, which is unknown, we shall use Eq. (7)
to determine it phenomenologically.

To that end, we first define the moments of g�x, z� by

gn�z� �
Z 1

0
dx xn22g�x, z� . (9)

Taking the moments of Eq. (8) then yields

dgn�z��dz � gn�z�Qn , (10)

where Qn �
R1

0 dy yn22Q� y�. It then follows that

gn�z� � gn�0�ezQn , (11)
whose exponential form suggests Qn , 0 for the physi-
cal process of depletion. The gluon depletion function
D� y, z� is defined by

g�x, z� �
Z 1

x

dx0

x0
g�x0, 0�D

µ
x
x0

, z

∂
, (12)

where g�x0, 0� is the gluon distribution in a free nucleon.
From Eq. (12) we have gn�z� � gn�0�Dn�z�, where Dn�z�
is the moment of D� y, z�. Comparison with Eq. (11) gives

Dn�z� � ezQn . (13)

To relate this result to R�xF , A�, we first note that
G�xF , A� in Eq. (3) is, by definition, G�xF , A� �
g�x1, A��g�x1, 0�, where xF is expressed in terms of x1. It
then follows from Eq. (3) that

J�x1, A� � g�x1, 0� R���xF�x1�, A����N���x2�x1�, A���

� g�x1, A�H�A� . (14)

In relating A to the average path length L of the projectile
p through the nucleus, we use L � 3RA�2 � 1.8A1�3 fm.
We then set z � L�2 for the average distance tra-
versed at the point of cc̄ production. Thus when
referring to the last expression of Eq. (14), we write
J�x1, A� � g���x1, z�A����H���z�A����, where g�x1, z� is to be
identified with that in Eq. (12). Note that the A depen-
dence of the middle expression in Eq. (14) is, on account
of Eq. (7), in terms of lnA, whereas that of the last
expression is in terms of z, or A1�3. Since it is known
that lnA � A1�3 for 60 , A , 240, we shall consider
the consequences of Eq. (14) only for A in that range.
We suggest that a revised form of presenting the data,
different from that in Eq. (1), should be tried in the future.

Taking the moments of J�x1, A�, we get using Eq. (11)

lnJn�A� 2 lngn�0� � zQn 1 lnH�z� . (15)

To determine Qn, it is necessary to use as an in-
put the gluon distribution g�x1, 0� in a free proton at
Q2 � 10 GeV2. We adopt the simple canonical form

g�x1, 0� � g0�1 2 x1�5, (16)

where the constant g0 is canceled in Eq. (15) due to the
definition of J�x1, A�. In our calculation we set g0 � 1.
Indeed, the accuracy of g�x1, 0� is unimportant, since it en-
ters Eqs. (14) and (15) in ways that render the result insen-
sitive to its precise form. On the basis of Eqs. (7) and (16),
J�x1, A� is therefore known. The left-hand side (LHS) of
Eq. (15) can then be computed except for a caveat. To cal-
culate the moments of J�x1, A�, it is necessary to computeR1

0 dx1 xn22
1 J�x1, A�. However, x1 cannot be less than t in

order to keep x2 # 1 [see Eq. (6)]. Furthermore, Eq. (7)
does not provide reliable information on J�x1, A� at small
x1, since the parametrizations of a�xF� and b�x2� are for
the variables in ranges that exclude the x1 ! t limit. For-
tunately, that part of the integration in x1 can be suppressed
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by considering n $ 3. The part of the integration in the
interval 0 , x1 , t amounts to only about 2% contribu-
tion even at n � 2 (if naive extrapolation is used), so its
inaccuracy will be neglected. Physically, it is the data at
high xF that we emphasize in our analysis, and that corre-
sponds to the high-n moments of J�x1, A�.

For convenience, let us denote the LHS of Eq. (15) by
Kn�z�, i.e., Kn�z� � ln�Jn���z�A�����gn�0��. For sample cases
of A � 100 and 200, they are shown as discrete points in
Fig. 1 for 3 # n # 20. Instead of performing an inverse
Mellin transform on Kn�z�, our procedure is to fit Kn�z� by
4010
a simple formula that can yield Q� y� by inspection. The
fitted curves shown by the solid and dashed lines in Fig. 1
are obtained by use of the formula

Kn � 2k0 1
k1

n
2

k2

n 1 1
1

k3

n 1 2
. (17)

Using ki and k0
i to denote the values for the cases A � 100

and 200, respectively, we have
k0 � 1.592, k1 � 23.42, k2 � 97.66, k3 � 89.17 ,

k0
0 � 1.831, k0

1 � 27.43, k0
2 � 113.97, k0

3 � 103.80 .
Because of Eq. (15), the n dependence of Kn prescribes
the n dependence of Qn. Let us therefore write

Qn � 2q0 1
q1

n
2

q2

n 1 1
1

q3

n 1 2
. (18)

Since Eq. (15) is to be used only for A . 60, we evaluate
it at A � 100 and 200, and take the difference. Denoting
z by z1 and z2, respectively, for the two A values, and with
Dki � k0

i 2 ki , Dz � z2 2 z1, we have

Dk0 � q0 Dz 2 ln
H�z2�
H�z1�

, Dki � qiDz �i fi 0� .

(19)

For the hadron absorption factor H�z� we write it in the
canonical exponential form [13], H�z� � exp�2rsz�,
where r21 � �4�3�p�1.2�3 fm3, z � 0.9A1�3 fm, and s

is the absorption cross section. Putting these in Eq. (19),
we get (with Dz � 1.086 fm)

q0 1 rs � 0.22, q1 � 3.68 ,

q2 � 15.01, q3 � 13.47
(20)

in units of fm21.

FIG. 1. Kn: The curves are fitted results using Eq. (17).
There is a reason why q0 and rs enter Eq. (20) as a
sum. To appreciate the physics involved, we first note that
Eq. (18) implies directly

Q� y� � 2q0d�1 2 y� 1 q1y 2 q2y2 1 q3y3. (21)

The first and third terms on the right-hand side (RHS)
above are the loss terms (i.e., gluon depletion), while the
second and last terms represent gain (i.e., gluon regenera-
tion). If Q� y� consisted of only the first term, then using
it in Eq. (8) would give dg�x, z��dz � 2q0g�x, z�, whose
solution is of the same exponential form as that of ab-
sorption. With both depletion and absorption present, the
exponents lead to a sum, as in Eq. (20). Our Q� y� is,
however, more complicated. The 2q2y2 term gives rise to
depletion that depends on the shape of g�x, z�, while the
q1y 1 q3y3 terms generate new gluons at x from all the
gluons at x0 . x.

Since Qn decreases monotonically with n, we
require Q3 , 0, and exclude Q2 from this consid-
eration because of its inaccuracy discussed earlier.
Combining Eqs. (18) and (20), we get rs , q0 1

rs 2 q1�3 1 q2�4 2 q3�5 � 0.05 fm21. We thus set
q0 � 0.17 fm21.

Since it is not easy to see directly from Qn or Q� y� the
magnitude of the effect of gluon depletion and regenera-
tion, we can calculate g�x1, z�, not from Eq. (12), but by
fitting the calculated gn�z� in Eq. (11), using the formula

gn�z� �
3X

i�1

ai�z�B�n 2 1, 5 1 i� , (22)

where B�a, b� is the beta function. Then the result yields
directly

g�x1, z� �
3X

i�1

ai�z� �1 2 x1�41i . (23)

For A � 100�200�, i.e., z � z1�z2�, we have
a1 � 0.58�0.485�, a2 � 0.92�1.118�, and a3 �
20.47�20.56� for g0 � 1 in Eq. (16). The result for
G�x1, z� � g�x1, z��g�x1, 0� is then
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FIG. 2. G�x1, z�: showing the effects of gluon depletion.

G�x1, z� � a1�z� 1 a2�z� �1 2 x1� 1 a3�z� �1 2 x1�2,

(24)

which is shown in Fig. 2 for two values of A. It is now evi-
dent that gluon depletion suppresses the gluon distribution
at medium and high x1, but the unavoidable gluon regen-
eration enhances the distribution at low x1. The crossover
occurs at x1 � 0.28.

Let us now exhibit our result for a�xF�, which is shown
in Fig. 3. The line is obtained by the use of Eq. (24) in
Eq. (3) and s � 6.5 mb in H�z�. Only one line is shown
for both A � 100 and 200, their difference being negli-
gible in the plot. Since our method of using the moments
cannot be extended to n � 2 due to the problems men-
tioned after Eq. (16), there is some inaccuracy inherent in
our analysis. Thus the fit cannot be expected to be per-
fect. Our model can reproduce the general trend of the xF

dependence, but not the detail structure, for which more
terms in Eqs. (17) and (18) would be needed. The overall
suppression is achieved by the use of a phenomenological
value of s, rather than the bound based on the technical
assumption of Q3 , 0.

Our analysis has been based on the assumption that
H�z, A� is independent of xF . If and when that xF de-
pendence can be determined independently, the effect can
easily be incorporated in our analysis to modify our nu-
merical result. Since that dependence is not likely to be
strong [6–8], the modification would be minor. Our study
shows that the J�c suppression observed at large xF in
pA collisions [5] strongly suggests the presence of gluon
depletion in the beam proton at high x1. The significance
of this finding goes beyond the J�c suppression problem
itself, since it would revise the conventional thinking con-
cerning the role of partons in nuclear collisions.

Since the gluon distribution is enhanced for x1 # 0.28,
the J�c suppression observed in the xF � 0 region in the
heavy-ion collisions at CERN-SPS cannot be due to the
FIG. 3. a�xF� vs xF : The solid line is our result compared to
the data from [3].

gluon depletion effect. The same would be true at RHIC.
However, we expect a significant increase in suppression
at large xF due to gluon depletion, not to color deconfine-
ment. We further speculate at this point that the gluon
enhancement at low x may be responsible, at least in part,
for the strangeness and dilepton enhancement already ob-
served in heavy-ion collisions.
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