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Creating Macroscopic Atomic Einstein-Podolsky-Rosen States from Bose-Einstein Condensates
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We present a scheme for creating quantum entangled atomic states through the coherent spin-exchange
collision of a spinor Bose-Einstein condensate. The state generated possesses macroscopic Einstein-
Podolsky-Rosen correlation and the fluctuation in one of its quasispin components vanishes. We show
that an elongated condensate with large aspect ratio is most suitable for creating such a state.

PACS numbers: 03.65.Bz, 03.67.–a, 03.75.Fi
Quantum entanglement lies at the heart of the pro-
found difference between quantum mechanics and clas-
sical physics [1]. The entanglement between the states
of spacelike separated particles is the fundamental reason
for the violation of Bell inequality, and causes many of the
“paradoxes” of quantum physics. In recent years, there has
been an interesting maturing of the discussions of entan-
glement away from the foundations of quantum mechanics
and to “applications” in the emerging field of quantum in-
formation processing.

A majority of the experimental realizations of quan-
tum entanglement to date involve the creation of entan-
gled photon pairs. Although ideal as carriers of quantum
information, photons are, however, normally difficult to
store for extended periods of time, in contrast to massive
particles. To overcome this difficulty, progress has been
made to generate correlated atom-photon pairs [2,3]. Re-
cently, much attention has also been paid to quantum corre-
lated atomic systems, particularly nonclassical multiatom
states [4–7], as these systems have important applications
in quantum measurement beyond the “standard quantum
limits” as well as in quantum computation.

There have already been several proposals to create en-
tangled atomic ensembles [6,8,9] and two of them have
recently been demonstrated experimentally [10,11]. All
of these schemes rely on the interaction between pho-
tons and atoms. Squeezing is achieved through map-
ping the nonclassical properties of electromagnetic waves,
e.g., squeezed light, onto the state of an atomic system,
or through a continuous quantum nondemolition measure-
ment. In this Letter, we show that by taking advantage of
0031-9007�00�85(19)�3987(4)$15.00
coherent spin-exchange ultracold collisions, one can gen-
erate macroscopic atomic Einstein-Podolsky-Rosen (EPR)
states [12] from a spinor Bose-Einstein condensate with-
out the need of light fields.

We proceed by first giving the general idea of the pro-
posed technique, and then turn to a more detailed theo-
retical discussion. Our scheme is illustrated in Fig. 1.
A spinor Bose-Einstein condensate consisting of a dilute
F � 1 atomic sample is initially polarized such that only
the spin-0 hyperfine ground state is populated at time
t � 0. Binary spin-exchange interaction then converts
the spin-0 atoms into pairs of spin-(61) atoms. The ir-
reversibility of such a process is provided by shifting the
energy of the spin-0 state above that of the spin-(61) states
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FIG. 1. Entanglement scheme: A spin-0 condensate is initially
prepared. Spin-exchange interaction creates spin-(61) atom
pairs whose energy level is shifted below that of spin-0 atom
by an amount of h̄d. This excess energy is transferred into the
kinetic energies of spin-(61) atoms which escape the trap.
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(which can be achieved using the ac Stark shift provided
by far off-resonant laser light [13]). As a result of this de-
tuning, the phase-matching condition, i.e., conservation of
momentum and energy, ensures that the resultant atoms in
the pair move in opposite directions away from each other
and escape the trap. Quantum entanglement results from
our ignorance about which of the two escaping atoms is in
the spin-(11) state and which has spin-(21).

We now turn to a detailed analysis of this system. At
t � 0, a condensate of N0 spin-0 atoms is confined in an
optical dipole trap. An additional off-resonant optical field
is used to shift the energy of the spin-0 state above those
of the spin-(61) states by an amount h̄d (see Fig. 1). The
spatial wave function of the condensate, w�r� is determined
by the stationary Gross-Pitaevskii equation.

At t . 0, the spin-(61) states start being populated by
the spin-exchange interaction

H � la

Z
dr ĉ

y
11�r, t�ĉy

21�r, t�ĉ0�r, t�ĉ0�r, t� 1 H.c.,

(1)

where la is a constant related to the s-wave scattering
lengths associated with the hyperfine levels involved, and
ĉa is the boson annihilation operator for spin-a atoms.
The effect of atomic recoil during this process is to trans-
fer the excess energy h̄d into the kinetic energy of the
spin-(61) atoms. Therefore, for the short time scale where
the propagation of (61) atoms can be neglected, we may
expand the boson field operators as

ĉ0�r, t� � w�r�e2idtĉ0�t� , (2)

ĉ61,q�r, t� � w�r�ei�q?r2vqt�ĉ61,q�t� , (3)

where vq � h̄jqj2��2m�, and the operators �ĉm� obey the
boson commutation relations �ĉm, ĉy

n � � dm,n. With these
expansions, Hamiltonian (1) may be reexpressed as

H � k
Z Z

dq dq0 r�q, q0�eiDq,q0 t ĉ
y
11,qĉ

y
21,q0 ĉ0ĉ0 1 H.c.,

(4)

where Dq,q0 � �vq 1 vq0 2 2d�, k � laV 2��2p�6 with
V being the quantization volume, and

r�q, q0� �
Z

drjw�r�j4e2i�q1q0�?r . (5)

Equation (4) is reminiscent of the Hamiltonian describ-
ing parametric down-conversion processes in nonlinear and
quantum optics. As is well known, these processes lead to
squeezing and to the generation of entangled photon pairs.

For short enough interaction times, the population of
the side modes (61) remain small compared to N0. In
this regime, we neglect the depletion of the spin-0 state
and treat ĉ0 as a c-number c0 such that jc0j

2 � N0. We
can furthermore neglect those terms in the Hamiltonian
(4) that describe atom-atom interactions involving only the
spin-(61) states. Under these assumptions, the Heisenberg
3988
dynamics of the operators ĉ61,q resulting from the interac-
tion Hamiltonian (4) simplifies to

d
dt

ĉ11,q � 2ik
Z

dq0 r�q, q0�eiDq,q0 t ĉ
y
21,q0c2

0, (6)

d
dt

ĉ21,q � 2ik
Z

dq0 r�q, q0�eiDq,q0 t ĉ
y
11,q0c2

0. (7)

To solve these equations, we first formally integrate Eq. (7)
to get

ĉ21,q�t� � ĉ21,q�0� 2 ikc2
0

Z
dq0 r�q, q0�

Z t

0
dt eiDq,q0t

3 ĉ
y
11,q�t 2 t�

	 ĉ21,q�0� 2 ikc2
0

Z
dq0 r�q, q0�d�Dq,q0�ĉy

11,q�t� ,

(8)

where the Markov approximation has been invoked. In-
serting Eq. (8) into Eq. (6), we obtain

d
dt

ĉ11,q �
N2

0

2
Gqĉ11,q 1 f̂y

q �t� , (9)

where we have defined the gain parameter

Gq � 2pk2
Z

dq0jr�q, q0�j2d�Dq,q0� (10)

and the noise operator

f̂y
q �t� � 2ikc2

0

Z
dq0 r�q, q0�eiDq,q0 t ĉ

y
21,q0�0� ,

whose correlation functions are given in the Markov ap-
proximation by


 f̂y
q �t�f̂q�t0�� � 0 ,


 f̂q�t�f̂y
q0�t0�� � N2

0 Gqd�q 2 q0�d�t 2 t0� .

It is this noise operator that triggers the populating
of spin-(11) state from quantum fluctuations. In
deriving Eq. (9), we have used the approximation
r�q, q0�r��q0, q00� 	 jr�q, q0�j2d�q 2 q00� and neglected
the principal part associated with the definition of the d

function.
Following a similar procedure, we can derive the equa-

tion of motion for ĉ21,q as

d
dt

ĉ21,q �
N2

0

2
Gqĉ21,q 1 ĝy

q �t� , (11)

where

ĝy
q �t� � 2ik

Z
dq0 r�q, q0�eiDq,q0 t ĉ

y
11,q0�0�c2

0. (12)

At this level of approximation, which neglects as we
recall the depletion of the spin-0 mode, the Heisenberg
equations of motion (9) and (11) are linear. They can
readily be integrated to give
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ĉ11,q�t� � Gq�t�ĉ11,q�0� 1
Z t

0
dt Gq�t�f̂y

q �t 2 t� ,

(13)

ĉ21,q�t� � Gq�t�ĉ21,q�0� 1
Z t

0
dt Gq�t�ĝy

q �t 2 t� ,

(14)

where Gq�t� � exp�N2
0 Gqt�2�. From these we can calcu-

late the population in modes �61, q�:

N61,q � 
ĉy
61,qĉ61,q� � exp�N2

0 Gqt� 2 1 .

It is also straightforward to calculate the correlation
function

Cq,q0 � 
ĉ21,qĉ11,q0�

� 2ikGq�t�c2
0r�q, q0�

Gq0�t� 2 eiDq,q0 t

N2
0 Gq0�2 2 iDq,q0

.

(15)

The fact that the 61 modes are correlated implies that the
two spin states (61) are entangled. It is obviously desirable
that spin-(21) atoms with momentum h̄q be correlated to
a spin-(11) atom with well defined momentum h̄q0.

From the definition (5) of r�q, q0�, we conclude that as
long as the spatial size of the condensate wave function is
much larger than the reciprocal length 1�jqj and 1�jq0j,
r�q, q0� is approximately proportional to a delta func-
tion, r�q, q0� ! d�q 1 q0�. In other words, under this
condition the two correlated atoms resulting from a spin-
changing collision move in opposite directions. Addition-
ally, the particle momenta jqj and jq0j have to satisfy the
conservation of energy condition vq 1 vq0 2 2d 	 0, a
condition that can be met for a large light shift h̄d. We
observe that in addition, a large energy shift h̄d is also re-
quired to produce spin-(61) atoms with sufficiently large
kinetic energy to escape the trap. As already mentioned,
this is required to prevent them from undergoing a colli-
sion resulting in a pair of spin-0 atoms.

In general, it is not sufficient to just produce entangled
atomic pairs. Rather, one would like to subsequently store
them, e.g., in a dipole trap. It is desirable for this pur-
pose to achieve a high degree of directionality in the gen-
erated atoms, so that they have a narrow enough angular
distribution. To see how this can be achieved, let us take a
closer look at the gain parameter Gq appearing in Eq. (10).
The expression of Gq is reminiscent of a similar gain pa-
rameter encountered in the study of superradiant scattering
from a condensate [14,15]. It has been shown in that con-
text that for a spatially anisotropic condensate, the largest
gain occurs along the longest dimension of the condensate
[15]. The same conclusion can be reached in the present
case. Figure 2 illustrates the gain along different direc-
tions for the case of a cylindrically symmetric condensate,
for various light shifts h̄d and aspect ratios. For simplic-
ity, we choose q � jqj �

p
2md�h̄, and assume that the

condensate has a Gaussian shape. Figure 2 illustrates quite
clearly that a smaller angular distribution of emitted atoms
is obtained for larger aspect ratios and larger q. Thus for
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FIG. 2. The gain parameter Gq versus u, for a Gaussian and
cylindrically symmetric condensate wave function of the form
w�r� ~ exp�2z2��2s2

z � 2 �x2 1 y2���2s2
���. u is the angle be-

tween q and the z axis. In the calculation, we set q � jqj �p
2md�h̄. Curve 1: sz � 10, q � 10; curve 2: sz � 10,

q � 20; curve 3: sz � 10, q � 40; curve 4: sz � 20, q � 40.
The units for sz and q are s� and 1�s�, respectively.

a strongly elongated cigar-shaped condensate, the matter-
wave modes along the long axis, which have the largest
gain coefficient Gq, will typically deplete all the conden-
sate atoms before the population of the off-axis modes can
significantly build up. As a consequence of mode com-
petition, the emission of the spin-(61) atoms is therefore
largely confined to two narrow cones at the two ends of
the cigar-shaped condensate.

From this discussion we conclude that in order to ex-
perimentally realize the proposed scheme, one should
first create an elongated spin-0 condensate with a large
light shift h̄d. Spin-exchange interactions then gener-
ate pairs of spin-(61) atoms flying in opposite directions
along its long axis. These atoms can be subsequently
captured by two traps located at opposite sides of the
original trap. Eventually, the spin-0 condensate is de-
pleted, with two new ensembles of pairwise entangled
atoms stored inside the side traps. We emphasize that al-
though each trap contains both spin-(11) and spin-(21)
atoms, these cannot undergo subsequent spin-exchange
collisions to produce spin-0 atoms, since this process
does not satisfy momentum-energy conservation.

The spin-(61) atoms being created in pairs, we know
for sure that taken together, the two ensembles must con-
tain an equal number of spin-(11) and spin-(21) atoms —
although how many spin-(11) and spin-(21) atoms are in
each ensemble is unknown. In the Schrödinger picture,
such a state may be expressed as

jC� �
N�2X

m�2N�2

am

Ç
N
2

, m

¿
l

Ç
N
2

, 2m

¿
r

, (16)

where N�2 is the total number of atoms in each of the two
“left” and “right” side traps, labeled by l and r , respec-
tively. The integers m and 2m represent the difference in
numbers of atoms in the spin states (11) and (21) in each
of the two traps.
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Introducing the z component of the quasispin operator

L̂�i�
z � N̂

�i�
11 2 N̂

�i�
21 ,

where N̂
�i�
61 is the number operator for state-(61) in ensem-

ble i and i � l, r , we have that

L̂�i�
z

Ç
N
2

, m

¿
i

� m

Ç
N
2

, m

¿
i
.

Since the explicit expressions of the coefficients am in (16)
are unknown, so are the expectation value and variance for
L̂�i�

z . However, a simple calculation shows that


L̂z� � 0 ,

�DL̂z�2 � 0 ,

where L̂z � L̂�l�
z 1 L̂�r�

z is the z component of the total
quasispin operator. Hence, although the variance of the
L̂�i�

z may be large for the individual ensembles, the variance
for the whole system vanishes. In other words, taken as
a whole the two ensembles represent a maximally spin-
squeezed state. This should be contrasted to the case of N
independent atoms in the state �j11� 1 j21��N , for which
one finds �DL̂z�2 � N�4.

We note that if we randomly pick one atom each from
the two side traps for an atomic ensemble prepared in state
(16), then their degree of entanglement is only of order
1�N . This is because although the atoms are created in
pairs, we cannot tell which particular pairs of atoms are
entangled. It is only through the collective spin measure-
ment that the quantum entanglement can be revealed. The
observation of such a macroscopic entanglement can be
carried out with the technique of spectroscopic detection
of collective spin noise at the quantum level described in
Refs. [10,16]. In practice, the state (16) has to be averaged
over the statistical distribution of the total particle number
N . However, as noted in Ref. [8], such fluctuations do not
affect the entanglement significantly for large numbers of
atoms.

In conclusion, we have proposed and analyzed a simple
scheme to create a macroscopic EPR-correlated atomic
state. Such a state possesses a nonlocal entanglement
and is maximally squeezed, in the sense that the fluctu-
ations of the z component of its quasispin vanish. Hence
we believe that this system will have important applica-
tions in precision measurement as well as in fundamen-
tal physics, such as the test of nonlocality in macroscopic
quantum systems. Our study shows that an elongated
spinor condensate with large aspect ratio and large en-
ergy difference between spin-0 and spin-(61) states is the
best candidate to create such a state. The correlations
between the atomic ensembles arise from the nonlinear
atom-atom interaction among the condensate atoms. This
3990
distinguishes our work from other proposals with a simi-
lar goal, where the correlations between atoms are trans-
ferred from EPR-correlated light fields. As a consequence,
our scheme can deal with strictly ground state hyperfine
atomic states. This is of considerable advantage, since the
entanglement of the kind described here is therefore ro-
bust against decoherence and immune from the quantum
fluctuations caused by the electromagnetic vacuum field
modes, which limit the degree of entanglement and spin
squeezing [8,10].
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Note added.— Upon completion of our work, we noticed
a paper by Duan, Sørensen, Cirac, and Zoller [17] in which
the possibility of creating squeezed spin state with Bose
condensates is investigated.
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