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Synchronization by Irregular Inactivation
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Many natural and technological systems have on/off switches. For instance, mitosis can be halted by
biochemical switches which act through the phosphorylation state of a complex called mitosis promoting
factor. If switching between the on and off states is periodic, chaos is observed over a substantial portion
of the on/off time parameter plane. However, we have discovered that the chaotic state is fragile with
respect to random fluctuations in the on time. In the presence of such fluctuations, two uncoupled copies
of the system (e.g., two cells) controlled by the same switch rapidly synchronize.

PACS numbers: 87.17.Ee, 02.50.Ey, 05.45.Xt, 87.18.–h
Development of multicellular organisms often seems to
require the synchronization of cellular activity [1], whether
that activity is replication [2,3], morphological changes
[4], or physiological activity [5]. How is that synchrony
achieved? Living organisms no doubt use a variety of
methods depending on the nature and interactions of the
components to be synchronized. Here we focus on divi-
sion synchrony which, in at least some cases, seems to be
obtained by halting cell cycling, then restarting it [2].

There are now a number of models of mitotic control
[6–10]. One of the smaller, simpler ones is the two-
variable model of Novak and Tyson [8]:
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In these equations, u is the concentration of active MPF
(mitosis promoting factor [11], a complex of cdc2 and
cyclin B), while y is the cyclin B concentration, both
scaled by the total amount of cdc2. The other symbols
are parameters [8,12]. An above-threshold concentration
of active MPF (i.e., a high value of u) is required for mi-
totic progression.

Progress to mitosis is often controlled by turning MPF
on or off through adjustments in the phosphorylation state
of cdc2 [13]. The mechanisms which control progress
through the cell cycle are called checkpoints [14]. Phos-
phorylation cascades [15] or other mechanisms [16] en-
sure that these processes are reasonably switchlike, i.e.,
that the MPF activation pathway can be rapidly down-
regulated or the inactivation pathway rapidly up-regulated
[17]. There are two biologically plausible points of ac-
tion for checkpoints in this model: Cell cycling can be
halted by switching the parameter g to a low value, this
parameter determining equilibrium for the phosphorylation
state of the activating residue threonine-167 [12]. Alterna-
tively, kwee, the effective rate constant for the activity of the
wee1 kinase which phosphorylates the inhibitory residue
tyrosine-15, can be switched to a high value. The latter
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checkpoint mechanism is the more biologically significant
[8]. We have studied the first scenario somewhat more
thoroughly, but our results are virtually identical for both
checkpoint mechanisms.

Since the activation and deactivation events are fast
relative to cell cycling, we treat these events as instanta-
neous switching between “on” and “off” states, each char-
acterized by a particular value of g or of kwee, depending
on the checkpoint mechanism considered. We consider
two different temporal programs for on-off switching. In
the first, switching between the on and off states occurs
periodically, i.e., g�t� [or kwee�t�] is a square wave with
active and inactive periods of fixed durations ton and toff.
This on-off switching protocol may describe the dynam-
ics in certain experimental settings [18,19] but it may also
model a two-oscillator system in which one oscillator is
slaved to the other. Both recent molecular biological stud-
ies [20] and classical cell biological observations [21] sug-
gest that coupled oscillators may be involved in controlling
the cell cycle. In the second case, g�t� [or kwee�t�] is a ran-
dom function representing the effect of naturally occurring
or externally imposed [19] environmental fluctuations on
cell cycling. Here we chose a two-state continuous time
Markov process with exponentially distributed switching
times [22] and mean active and inactive periods t̄on and
t̄off, the inverses of which are the switching probabilities
per unit time.

We used parameters of the Novak-Tyson model for
which the on state (g � gmax � 0.9, thr-167 actively
phosphorylated [8]) corresponds to a limit-cycle regime
[23]. In the off state (g � 0 or some other small value
such that thr-167 dephosphorylation dominates), the
system has a stable equilibrium point on the u � 0 axis.
On-off parametric switching through g therefore results
in a selection between two different flows in the u 3 y

phase plane. Dichotomous selection between flows has
previously been studied, with very different objectives
than those pursued here [24].

In the periodically switched case, chaos as well as a vari-
ety of phase-locked modes were found in extended regions
of the ton 3 toff parameter plane. Chaos was confirmed
by computing Lyapunov exponents [25]. The chaotic
© 2000 The American Physical Society
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region consists of a series of islands in the ton 3 toff
plane, some of which are quite large (Fig. 1). Chaos,
when it occurs, implies an inability of similarly prepared
systems (e.g., two sister cells) to synchronize, even if
driven by the same switch [26].

We next turned our attention to the Markov-switched
version of the model. We had expected (perhaps naively)
that the statistically more complex switching signal
provided by the Markov process would more readily
produce chaos than periodic switching. However, in an
extensive numerical study, we found that the Lyapunov
exponents of the Markov-switched model were always
negative, implying that similarly prepared systems will al-
ways synchronize under this switching protocol. Numeri-
cal integration confirms that synchronization normally
occurs rather rapidly, even when the initial conditions are
very different (Fig. 2). We emphasize that the cells are
receiving a common external switching signal (modulating
g) but are not coupled to each other in any way.

The g � 0 flow allows only trivial dynamics. To test
the robustness of Markov switching as a synchronizer, we
next studied the biologically more significant variant in
which kwee, rather than g, is a function of time. The wee1
kinase is inhibitory so the oscillator is on when kwee has a
low value (1.5 min21) and off when kwee has a high value
(3.5 min21). In the off state, the fixed point is excitable
[8]. The results were identical to those obtained for our
first model: For periodic switching, chaos is observed
in similarly shaped and located regions of the ton 3 toff
parameter plane as in Fig. 1. In the Markov-switched case,
the Lyapunov exponents are always negative.

FIG. 1. Chaotic “archipelago” in the ton 3 toff parameter
plane for the Novak-Tyson system with k0

1 � 0.01, k0
2 � 0.01,

k00
2 � 10, kwee � 1.5, k0

25 � 0.04, k00
25 � 100 min21, and g

periodically switched between 0 and gmax � 0.9. The outline
of the chaotic region was obtained by computing Lyapunov
exponents on a grid and drawing the contour of zero lead-
ing Lyapunov exponent. No chaotic states are found for
toff . 20 min. The picture is roughly periodic along the ton
axis with a period equal to the natural period of the oscillator
(34.35 min) since adding integer multiples of the period to ton
only adds additional transits around the limit cycle (with a zero
contribution to the Lyapunov exponent) and does not affect the
balance of expansion and contraction.
We then wanted to convince ourselves that our re-
sults were not specific to models involving switching
between planar flows so we briefly studied Goldbeter’s
three-variable mitotic control model [7]. We assumed
that Goldbeter’s V2, the maximum activity of the wee1
kinase (roughly equivalent to kwee in the Novak-Tyson
model), is the kinetic parameter through which check-
points halt the cell cycle. All other parameters were
set as in [7], Fig. 3. Again, periodic switching be-
tween active (V2 � 1.5 min21, limit-cycle) and inactive
(V2 � 3 min21, stable node) states commonly results in
chaotic behavior while Markov switching is always an
effective synchronization protocol.

The difference in behavior of the periodically and
Markov-switched systems can be understood by a rela-
tively simple argument. The leading Lyapunov exponent
of a system with a limit cycle is exactly zero: While
there are regions of local expansion and regions of local
contraction [27], after one full period two points on
the limit cycle must be exactly where they started so
the expansion and contraction must average out to zero
along the limit cycle [26]. In the periodically switched
version of the model, it is possible to choose the on and
off times in such a way that the contracting region is
undersampled in the on flow. For the off flows studied
here, the behavior is purely contractive in the relevant
parts of the phase space. Expansion during the on phase
must be sufficient to overcome the off flow’s contractive
contribution. This occurs over significant regions of

FIG. 2. Two trajectories (bottom) of the Novak-Tyson sys-
tem driven by the same realization of a Markov process (g,
top). The parameters are as in Fig. 1, except t̄on � 14 min
and t̄off � 0.8 min. The first trajectory (solid) was started
from �u, y� � �0, 0� while the second (dotted) was started from
�0.2, 0.2�. Because of the stochastic nature of the process, the
time to synchronization is highly variable, but this realization
is not untypical. The leading Lyapunov exponent for these
values of the parameters is 20.012 6 0.002 min21. In the pe-
riodically switched case (ton � 14 min and toff � 0.8 min ex-
actly), chaos is observed with a leading Lyapunov exponent of
0.024 97 6 0.000 02 min21.
3975



VOLUME 85, NUMBER 18 P H Y S I C A L R E V I E W L E T T E R S 30 OCTOBER 2000
FIG. 3. Leading Lyapunov exponents (l1) for the nearly
periodic switching protocol described in the text. The parame-
ters are as in Fig. 1, except t̄on � 4 min and t̄off � 11 min.
The open symbols were obtained for Doff � 0.01 min and
variable Don (bottom scale). The filled symbols correspond to
a fixed Don � 0.01 min and variable Doff (top scale). Note that
the chaotic state is much more fragile with respect to variability
in the on time (transition to negative Lyapunov exponents near
Don � 0.58 min) than with respect to variability in the off
time (crossover near Doff � 5.9 min. For comparison, in the
periodic switching limit, the leading Lyapunov exponent is
0.023 553 6 0.000 007 min21, while in the Markov switching
limit, l1 � 20.0427 6 0.0002 min21. The Lyapunov exponent
in the hybrid process approaches the Markov limit at large
values of Don, even in the absence of significant variability
in the off time, underlining the central role of the on time in
the dynamics.

the ton 3 toff parameter plane so that chaotic states
are readily observed. Although the off time is clearly
important, it follows from these observations that the on
time is much more critical to the attainment of a chaotic
state. In the Markov-switched versions, the time spent in
the on state is variable so the system explores the limit
cycle uniformly. Contraction during the off flow then
ensures that the Lyapunov exponents will be negative and
that synchronization will occur.

We confirmed our reasoning by undertaking a series of
Lyapunov exponent calculations with a switching proto-
col [applied to g�t� in the Novak-Tyson model] in which
we could control the variability of the on and off times.
Specifically, we introduced “bandwidths” Don and Doff
such that transitions from the on to the off state are forbid-
den if the time since activation is less than t̄on 2 Don and
forced when the time since activation reaches t̄on 1 Don.
Between these two limits, there is a constant switching
probability per unit time of pon!off � 1�t̄on. Transitions
from off to on are analogously treated. While this stochas-
tic process is somewhat unusually defined [28], it has the
advantage of reducing, in suitable limiting cases, either to
a purely periodic signal (Don and Doff both small) or to an
ordinary Markov process (Don and Doff both large), which
makes the results of these and our previous computations
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directly comparable. It turns out that it is always neces-
sary to strongly constrain the variability of the on time to
observe a chaotic state. It is often necessary to limit the
variability of the off time as well, but the chaotic state is
clearly less sensitive to Doff. Typical results are shown
in Fig. 3, where we can see that the chaotic regime can
tolerate a much larger value of Doff than of Don. The de-
crease in the leading Lyapunov exponent with increasing
bandwidth is not always monotonic, but we have yet to
observe a case in which the Lyapunov exponent crosses
the zero axis more than once. In some cases, chaos is
observed even when the off time bandwidth is unlimited.
These results lead us to conclude that the good synchro-
nization properties of the Markov switch are due mainly
to irregularity in the duration of the active phase prevent-
ing expansion in the limit cycle regime from dominating
the dynamics.

The general conclusion to be drawn from this study is
that on-off parametric switching with variable on times
facilitates synchronization by suppressing chaos. Even a
modest amount of variability in the on time is generally
sufficient to suppress chaos.

Two recent modeling studies have demonstrated syn-
chronization of identical uncoupled systems by a common
additive stochastic input [29,30]. The phenomena treated
in these studies and in ours may be of particular signifi-
cance in neurobiology [30] where “chattering cells” may
play a role in synchronizing cortical activities [31], in de-
velopmental biology where synchronization of cellular ac-
tivities is often required [1], and in cell physiology where
cell division synchrony is frequently desirable [32].

This research was supported by the Natural Sciences
and Engineering Research Council of Canada. M. R. R.
thanks Professor Albert Goldbeter of the Université Libre
de Bruxelles for a critical reading of the manuscript and
for his hospitality, as well as Dr. Jichang Wang for useful
discussions.

*Corresponding author.
Email address: roussel@uleth.ca

[1] M. H. Johnson and M. L. Day, BioEssays 22, 57 (2000).
[2] B. J. Thomas, D. A. Gunning, J. Cho, and S. L. Zipursky,

Cell 77, 1003 (1994).
[3] A. Penton, S. B. Selleck, and F. M. Hoffmann, Science 275,

203 (1997).
[4] C. A. Rabito, J. A. Jarrell, and E. H. Abraham, J. Biol.

Chem. 262, 1352 (1987).
[5] R. Yuste, D. A. Nelson, W. W. Rubin, and L. C. Katz,

Neuron 14, 7 (1995).
[6] M. N. Obeyesekere, S. L. Tucker, and S. O. Zimmerman,

Biochem. Biophys. Res. Commun. 184, 782 (1992);
M. Kærn and A. Hunding, J. Theor. Biol. 193, 47 (1998);
B. Novák et al., J. Theor. Biol. 199, 223 (1999).

[7] A. Goldbeter, Proc. Natl. Acad. Sci. U.S.A. 88, 9107
(1991).



VOLUME 85, NUMBER 18 P H Y S I C A L R E V I E W L E T T E R S 30 OCTOBER 2000
[8] B. Novak and J. J. Tyson, J. Theor. Biol. 165, 101 (1993).
[9] C. D. Thron, Biophys. Chem. 57, 239 (1996).

[10] P.-C. Romond, M. Rustici, D. Gonze, and A. Goldbeter,
Ann. N.Y. Acad. Sci. 879, 180 (1999).

[11] A. Murray and T. Hunt, The Cell Cycle (Oxford University,
New York, 1993).

[12] Our notation is identical to Novak and Tyson’s except that
our g is the inverse of their G: g � K167��1 1 K167� [
�0, 1�, where K167 is the effective equilibrium constant for
phosphorylation of the activating residue thr-167 of MPF.

[13] T. R. Coleman and W. G. Dunphy, Curr. Opin. Cell Biol. 6,
877 (1994).

[14] L. H. Hartwell and T. A. Weinert, Science 246, 629 (1989).
[15] J. E. Ferrell, Jr., Trends Biochem. Sci. 21, 460 (1996).
[16] J. E. Ferrell, Jr., Trends Biochem. Sci. 23, 461 (1998).
[17] P. R. Clarke, I. Hoffmann, G. Draetta, and E. Karsenti,

Mol. Biol. Cell 4, 397 (1993).
[18] B. C. Goodwin, Eur. J. Biochem. 10, 511 (1969).
[19] A. Boiteux, A. Goldbeter, and B. Hess, Proc. Natl. Acad.

Sci. U.S.A. 72, 3829 (1975).
[20] S. B. Haase and S. I. Reed, Nature (London) 401, 394

(1999).
[21] D. Lloyd, Adv. Microb. Physiol. 39, 291 (1998).
[22] N. G. van Kampen, Stochastic Processes in Physics and

Chemistry (North-Holland, Amsterdam, 1981).
[23] The general physiological significance of the oscillatory

regime has been questioned by Thron [9], who argues
that bistability and excitability are more typical dynamical
behaviors for the cell cycle than limit cycles. However,
even if the pieces of the cell cycle control system display
only stable steady states, it may be that the overall system
displays limit cycle behavior, as argued by Goldbeter and
co-workers [10]. Since the conclusions of our study depend
very little on the detailed kinetics used, our results can
reasonably be expected to extend to the more complex
situation of a limit cycle built up from bistable or excitable
circuit elements or, for that matter, to completely unrelated
natural or technological systems in which on-off switching
operates.
[24] I. L’Heureux, R. Kapral, and K. Bar-Eli, J. Chem. Phys.
91, 4285 (1989).

[25] G. Rangarajan, S. Habib, and R. D. Ryne, Phys. Rev. Lett.
80, 3747 (1998). Our implementation uses a fourth-order
Runge-Kutta integrator and seeks consistency of the expo-
nents when both the length of the trajectory is extended
and the step size is reduced. A pure relative error crite-
rion was used, resulting in tight error control in the critical
region where the leading Lyapunov exponent is near zero.
The results were spot-checked using an independently writ-
ten integrator and a different numerical method by running
pairs of trajectories to verify qualitative agreement with the
exponent calculations.

[26] H. G. Schuster, Deterministic Chaos (VCH, Weinheim,
1995), 3rd ed.

[27] The regions of expansion and contraction are bounded by
the curve in the u 3 y plane on which the real part of the
leading eigenvalue of the Jacobian is zero. Equivalently,
this is the locus of points at which the divergence of the
flow is zero.

[28] If Don . t̄on, the system is subject to Markov-process
switching to the off state as soon as it is activated. Don

then controls only the length of the tail of the distribution.
Additionally, note that this stochastic process is normalized
only in the trivial sense that if the system is still in the on
state when t̄on 1 Don time units have elapsed, a transition
from the on to the off state is forced. Similar comments
can obviously be made for switching from the off to the on
state. Calculations reported elsewhere [M. R. Roussel and
J. Wang (to be published)] indicate that the results are not
very sensitive to the details of the stochastic process which
generates variability.

[29] P. Parmananda and Y. Jiang, J. Phys. Chem. A 102, 4532
(1998).

[30] J. Feng, D. Brown, and G. Li, Phys. Rev. E 61, 2987 (2000).
[31] C. M. Gray and D. A. McCormick, Science 274, 109

(1996).
[32] D. J. Grdina et al., Cell Tissue Kinet. 17, 223 (1984);

R. A. White et al., Cell Tissue Kinet. 17, 237 (1984).
3977


