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We investigate the dynamics of the Josephson vortex lattice in layered high-Tc superconductors at
high magnetic fields. It is shown that the average electric current depends on the lattice structure and is
resonantly enhanced when the Josephson frequency matches the frequency of the plasma mode. We find
the stability regions of a moving lattice. It is shown that a specific lattice structure at a given velocity is
uniquely selected by the boundary conditions; at small velocities a periodic triangular lattice is stable and
looses its stability at some critical velocity. At even higher velocities, a structure close to a rectangular
lattice is restored.

PACS numbers: 74.60.Ge, 47.54.+r, 74.50.+r
Transport properties of layered superconductors, such
as Bi2Sr2CaCu2Ox (BSCCO), in magnetic field parallel
to the layers are determined by the dynamics of Joseph-
son vortex lattice (JVL) [1–3]. Moving JVL generates a
traveling electromagnetic wave in the medium. Similar to
the Eck resonance in a single junction [4], one expects a
strong resonance emission when the velocity of the lattice
matches the plasma wave velocity [5,6]. In the current-
voltage �I-V � dependence this resonance is seen as a strong
enhancement of current at fixed voltage. In contrast to a
single junction, JVL in layered superconductors has soft
degrees of freedom related to the phase shifts between dif-
ferent layers. This leads to a rich variety of dynamic states
observed in numerical simulations [7]. In particular, a pe-
riodic lattice corresponds to a constant phase shift between
neighboring layers, ranging from 0 for the rectangular lat-
tice to p for the static triangular lattice. The moving lattice
generates an electromagnetic wave with the c-axis wave
vector selected by the lattice structure. Since the velocity
of a plasma wave propagating along the layers depends on
this wave vector [8], the resonant velocity of the lattice
depends on its structure.

In this Letter, we investigate the stability of moving
JVLs and the evolution of structure as a function of its ve-
locity for large size samples [9]. We show that a specific
lattice structure at a given velocity is uniquely selected by
the boundary conditions. At small velocities a periodic lat-
tice is stable. The phase shift between neighboring layers
smoothly decreases with the increase of velocity, starting
from p for a static lattice. At some critical velocity the
lattice becomes unstable. At even higher velocities a pe-
riodic lattice with the phase shift smaller than p�2 is re-
stored again.

Consider a layered superconductor in a magnetic field
applied along the layers (y axis) with transport current
flowing across the layers (z axis). The dynamics of such
a system is described by the inductively coupled sine-
Gordon equations for the gauge-invariant phase differ-
ences un [10]. Introducing the reduced time t � vpt and
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in-plane coordinate u � x��gs�, we express currents jx,n,
jz,n and electric fields Ez,n via un and the reduced mag-
netic fields hn � Hn2pgl

2
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where vp is the Josephson plasma frequency, g is the
anisotropy factor, s is the interlayer spacing, jJ is the
Josephson current, Ep � F0vp��2pcs�, l � lab�s, and
jab � cF0��8pl

2
abgs�. nc � 4psc��´cvp� and nab �

4psabl
2
abvp�c2 are the dissipation parameters, which are

determined by the quasiparticle conductivities sc and sab

and are connected as nc�nab � scg2�sab . Using the
above relations we derive from the Maxwell equations the
coupled equations for un and hn
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where =2
nhn � hn11 1 hn21 2 2hn. Equivalent forms

of these equations have been derived in Refs. [6,11].
In the case of negligible in-plane dissipation (nab � 0)
they can be reduced to equations containing only
un [10]. Taking parameters typical for underdoped
BSCCO at T � 50 K: g � 500, lab � 240 nm,
s � 15 Å, sab � 2 3 104 �V ? cm�21, and sc �
2 3 1023 �V ? cm�21, one obtains estimates: nab � 0.1
and nc � 0.002, which we will use in numerical com-
putations. For these parameters the dissipation in a wide
range of electric and magnetic fields is mainly determined
by the in-plane channel [12].

We consider the situation when all junctions are filled by
JVs. This is always the case at high magnetic field B above
F0�5.5gs2 [13] or at high currents, when all junction are
driven into the resistive state. Neglecting self-field of the
© 2000 The American Physical Society
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transport current, we represent a solution to Eqs. (1) and
(2) for the resistive state in the form

un�t, u� � vEt 1 kHu 1 fn�t� 1 ũn�t, u� , (3)

hn�t, u� � h 1 h̃n�t, u� . (4)

Here the Josephson frequency vE is determined by the
electric field, vE � Ez�Ep , and the wave vector kH is
determined by the magnetic field, kH � 2pHgs2�F0 �
h�l2. ũn�t, u� and h̃n�t, u� are the oscillating phase and
magnetic field induced by Josephson coupling, ũn, h̃n ~

sin�vEt 1 kHu 1 an�. Solution (3) corresponds to the
lattice moving with velocity vE�kH . The structure of
the lattice is determined by the phase shifts fn. Without
Josephson coupling the system is degenerate with respect
to arbitrary phase shifts fn. Josephson coupling elimi-
nates this degeneracy. It either leads to slow dynamics of
phase shifts fn or selects a certain steady state structure.
The equations for fn�t� can be obtained using an expan-
sion with respect to Josephson coupling and averaging over
fast degrees of freedom. This procedure will be described
in detail elsewhere [14].

For periodic JVL one has fn � kn. In such a state
the chains of JVs in the neighboring layers are shifted
by the fraction k�2p of the lattice constant (see inset in
Fig. 1). In particular, k � 0 corresponds to a rectangu-
lar lattice, and k � p corresponds to a triangular lattice
(ground state at vE � 0). In the first order with respect
to Josephson current, the oscillating phase ũn is given by
ũn � Im�G�k� exp�i�vEt 1 kHu 1 kn��	 with

G�k� �

∑
v2

E 2 incvE

2
k2

H�1 1 inabvE�
2�1 2 cosk� 1 �1 1 inabvE��l2

∏21

.

To the second order we obtain the average reduced Joseph-
son current iJ � iJ�k, kH , vE� � 
sinun�t, u�� [11]. In
the case of not very large in-plane dissipation nabvE ø
2l2�1 2 cosk� 1 1, it has the resonant dependence on the
Josephson frequency vE (electric field)
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1
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E 2 v2
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,

where vp�k� � kH�2�1 2 cosk� 1
1
l2 �21�2 is the plasma

frequency at the wave vector k and
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2�1 2 cosk�k2

Hnab
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FIG. 1. Stability regions of moving Josephson lattice in
the plane vE-k calculated for representative parameters
nc � 0.002, nab � 0.1, and kH � 8. Grey regions correspond
to unstable lattices. Sections of the boundaries marked by black
correspond to the long-wave instability. Sections marked by
light grey correspond to the instability with q � p. The line
starting at (0, p) shows the dependence of the lattice wave
vector on the frequency vE selected by the boundary with
free space. We also show the resonance line, corresponding to
matching between the Josephson frequency and the frequency
of the plasma wave at the wave vector k. The inset sketches a
steady state corresponding to a regular lattice.

is the dissipation parameter of the plasma mode [11].
When the frequency vE matches the corresponding plasma
wave frequency vp�k�, a resonance enhancement of the
current is expected. The moving lattice generates a travel-
ing electromagnetic wave with the Poynting vector P. For
the in-plane component of P we obtain

Px �
PabvEv2

p�k��kH

�v2
E 2 v2

p�k��2 1 �vEn�k��2
,

Pab �
F

2
0vp

32p3l2sg
.

(5)

For typical BSCCO parameters at low temperatures (l �
200 nm, g � 500, vp�2p � 150 GHz) we obtain Pab �
125 W�cm2.

To investigate the stability of JVL we perturb the lattice
solution as fn�t� � kn 1 Re�uq exp�a�q�t 1 iqn�	
and derive from Eqs. (1) and (2) the eigenvalue
a�q� � a�q, k, kH , vE�

a�q� � 2
1
4

G�k 1 q� 1 G��k 2 q� 2 2Re�G�k��
nc 1

1
4i �F �k 1 q, k� 2 F ��2k 1 q, k��
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The lattice is stable if there is no exponentially growing
solution in the whole q interval, i.e., Re�a�q�� # 0, for
0 # q # p. The onset of instability is characterized by
the wave vector qi of the most unstable mode. There
are three special cases: the long-wave instability qi �
0, the short-wave instability qi � p , and the instability
with 0 , qi , p. One can also distinguish absolute and
convective instabilities [15]. The spectrum a�q� has an
important symmetry property a�q � p, k � p�2� � 0.
This means that a stable region cannot cross the line k �
p�2 and it is impossible to evolve continuously from the
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static triangular lattice to the fastly moving rectangular
lattice without intersecting an instability boundary. The
triangular lattice always looses its stability before reaching
the resonance vE � kH�2, at the frequency vD�kH � which

is determined by a simple analytical equation v
2
D 2

k2
H

4 �

2vD�nc 1
k2

Hnab

4 � �
q

1 1 n
2
abv

2
D 2 nabvD�.

To explore the stability of JVL we calculated numeri-
cally Re�a�q�� (6) throughout the vE 2 k plane and
found the lines at which either Re�a�q�� � 0 at finite q
or Re�d2a�q��dq2� � 0 at q � 0. The stability diagram
for representative parameters nc � 0.002, nab � 0.1,
and kH � 8 is shown in Fig. 1. For these parameters
we found three stability regions at moderate vE : (i) the
low-velocity region located below the resonance line and
at p�2 , k , p , (ii) the high-velocity region located
along the resonance line with k approaching 0 with an
increase of vE , and (iii) the region located above the reso-
nance line and at p�2 , k , p (this region disappears
at higher fields). At the boundary of the first region the
lattice experiences a long-wave instability for k . 2.04.
At smaller k the instability occurs at finite wave vector
q � qi and qi grows continuously with the decrease of k.

Selection by the system of a specific wave number k

from the continuous spectrum is not directly related to sta-
bility of the corresponding periodic structure. For the static
case the structure is selected by the minimum energy con-
dition. Such a condition is absent in the dynamic case. In
this case a specific JVL structure can be determined by the
boundary. To demonstrate this, we consider a semi-infinite
stack of junctions with n � 1, 2, . . . separated by a sharp
boundary from the medium with arbitrary electromagnetic
properties. To derive equations for the phase shifts fn

for such a system we have to find a solution of the linear
equations without Josephson coupling, taking into account
the boundary conditions. For plasma wave with given fre-
quency v � vE and wave vector along the layers k � kH

the oscillating phases (ũn) and magnetic fields (h̃n) in the
junctions can be written as

ũn, h̃n ~ exp�2iq1n� 1 B exp�iq1n�, at n $ 1 , (7)

where q1 � q1�k, v� is a (complex) wave vector given
by

cosq1 � 1 2
k2�1 1 inabv�
2�v2 2 incv�

1
1 1 inabv

2l2 , (8)

with Im�q1� . 0. The properties of the boundary are com-
pletely characterized by the complex amplitude of reflected
wave B � B�k, v�, which has to be found by matching
the solution (7) with electromagnetic oscillations in the
medium at z , 0. In general, B�k, v� can be a complex
number with an arbitrary absolute value. Only in the sim-
plest case of vanishing dissipation and propagating wave
�Im�q1� � 0�, B�k, v� determines a conventional reflec-
tion coefficient, R�k, v� � jB �k, v�j2, and has property
jB �k, v�j , 1. A large class of boundaries, including
boundary with free space, is well described by the ideal
reflection B � 21. Averaging with respect to oscillating
3940
phases and field, we derive the following equation for the
steady state phase shifts fn

1
2

X̀
m�1

Im�G�n, m� exp�2i�fn 2 fm��	 � iJ , (9)

where

G�n, m� � G0�n 2 m� 1 BG0�n 1 m� , (10)

G0�n� � G0�n; kH , vE�

�
dn

v
2
E 2 incvE

2
k2

H�1 1 inabvE�
�v2

E 2 incvE�2

expiq1jnj
2i sinq1

.

(11)

The second term in Eq. (10) describes the surface contribu-
tion and vanishes at n, m ! `. The solution, correspond-
ing to the lattice in the bulk, has the form fn � kn 1 un,
where un is the surface deformation, un ! 0 at n ! `.
Substituting this ansatz into Eq. (9) we obtain a nonlin-
ear degenerate system of equations for un. The solution
for un exists only for special values of k, i.e., the bulk
structure is selected by the boundary conditions. For such
selected states z component of the Poynting vector Pz is
always directed from the boundary towards the bulk of
the sample [16]. A similar pattern selection mechanism
is relevant for various nonequilibrium systems [17]. At
small vE the system becomes linear with respect to un

and its solvability condition can be found analytically. In
the case B � 21 we obtain deformation of the lattice at
small velocities k � p 2 �nab 1 7nc�k2

H�vE . In a fi-
nite system with identical boundaries the configuration is
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FIG. 2. (a) Current-voltage characteristics at different mag-
netic fields, for kH � 6, 8, 12, and 16 (for g � 500 H � kH ?
0.3T). The dependencies are obtained using numerically com-
puted steady states with parameters nc � 0.002, nab � 0.1. The
thick lines show stable branches and the thin lines show unsta-
ble branches. The branches, marked by dashes, correspond to
the double-periodic lattices. (b) Electric field dependencies of
the Poynting vector along the layers for electromagnetic wave
generated by the moving lattice [see Eq. (5)].
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FIG. 3. Multibranch structure of the current-voltage character-
istic due to dynamic phase separation. Two states corresponding
to slow lattice motion (velocity ys) and fast lattice motion (ve-
locity yf) coexist within the current range marked at the vertical
axis. In this region the intermediate phase-separated states ex-
ist, in which the system is split into fastly and slowly moving
regions. The intermediate branch corresponding to one of such
states is shown by the dotted line.

typically symmetric because each boundary selects the
same wave number. The waves collide in the middle form-
ing a phase defect [17].

To find the steady state configurations at all velocities
we solved Eq. (9) numerically taking B � 21 and using
the same parameters (nc � 0.002, nab � 0.1). The de-
pendence k�vE� obtained from these solutions for kH � 8
is shown in Fig. 1 together with the stability regions. At
small velocities the lattice experiences smooth evolution
of structure with the lattice wave vector k decreasing from
p at zero velocity to smaller values until it hits the in-
stability boundary. At higher velocities the stable lat-
tice with k , p�2 is restored. The structure continues
to evolve smoothly towards the rectangular configurations
with an increase of velocity. Near the line k � p�2 we
observe a transition to the double-periodic lattice fn �
pn�2 1 �21�ny, which becomes stable at high fields.

Figure 2 shows the evolution of the current-voltage de-
pendence and the in-plane Poynting vector (5) with an
increase of magnetic field. Up to magnetic field H �p

sab��g2sc� F0��pgs2� (kH � 16), the current-voltage
dependencies have two stable branches, corresponding to
moving periodic lattices, separated by a broad instability
region where periodic JVL cannot exist. In this regime two
lattice solutions exist within a finite range of currents. Such
a coexistence is facilitated by the high in-plane dissipation,
which causes a strong dependence of the JVL velocity on
its structure. Within the coexistence region one can expect
a family of intermediate states, in which the system is split
into two (or more) domains moving with different veloci-
ties separated by a phase defect [dynamic phase separation;
see Fig. 3]. The phase-separated states give the most nat-
ural interpretation of the multiple I-V branches observed
by Hechtfischer et al., who studied transport properties of
JVL in BSCCO mesas at high magnetic fields [2]. This
interpretation can be verified by measuring the spectrum
of microwave irradiation emitted by the stack. Instead of
a single peak located at the Josephson frequency corre-
sponding to the average voltage, the spectrum of irradia-
tion should contain two peaks corresponding to the “fast”
and “slow” states.

In conclusion, we investigated the stability and boundary
structure selection of the driven JVL. We found two major
stability regions, separated by an unstable region: the low-
velocity region corresponds to a moving structure close to a
triangular lattice, and the high-velocity region corresponds
to an almost rectangular lattice.
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