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Spin Hall Effect in the Presence of Spin Diffusion
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Hirsch [Phys. Rev. Lett. 83, 1834 (1999)] recently proposed a spin Hall effect based on the anomalous
scattering mechanism in the absence of spin-flip scattering. Since the anomalous scattering causes both
anomalous currents and a finite spin-diffusion length, we derive the spin Hall effect in the presence
of spin diffusion from a semiclassical Boltzmann equation. When the formulation is applied to certain
metals and semiconductors, the magnitude of the spin Hall voltage due to the spin accumulation is found
to be much larger than that of magnetic multilayers. An experiment is proposed to measure this spin
Hall effect.

PACS numbers: 72.10.–d, 72.15.Gd, 73.50.Jt
Spin accumulation has been known in magnetic multi-
layers when a current flows in the direction perpendicular
to the plane of the layers (CPP) [1–4]. One of the imme-
diate consequences of the spin accumulation is that there
is an extra resistance when the magnetization of the neigh-
boring magnetic layers is aligned antiparallel compared to
that with parallel alignment. This extra resistance can be
measured by utilizing the giant magnetoresistance effect in
CPP geometry [5]. For a magnetic and a nonmagnetic bi-
layer structure, Johnson and Silsbee [2] demonstrated that
such spin accumulations can extend to long length scales of
the order of a few micrometers. Recently, Hirsch [6] pro-
posed another spin accumulation effect due to spin-orbit
coupling or anomalous scattering mechanisms. When a
spin-unpolarized current flows in a metal, the spin-orbit
interaction produces asymmetric scattering of the conduc-
tion electrons so that electrons with one particular spin
direction, e.g., spin-up electrons, have a larger probability
to be scattered to the right compared to spin-down elec-
trons. Similarly, spin-down electrons would tend to scatter
to the left more than spin-up electrons. Thus a spin current
will be generated in a direction transverse to the direction
of the current flow. Furthermore, if a spin-polarized cur-
rent is present in a semiconductor, Bulgakov et al. [7] have
shown that the Hall-like effect can be induced by the spin-
orbit coupling without an external magnetic field. This
left-right asymmetric scattering is known as skew scatter-
ing and has been studied for decades [8]. Much of the
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experimental and theoretical work has been focused on
determining the magnitude of the anomalous transverse
electric field in various ferromagnetic metals and semicon-
ductors. The presence of the transverse spin current for a
paramagnetic metal mentioned above was first discussed
by Hirsch [6]. In this paper, we derive this “spin Hall ef-
fect” from a semiclassical Boltzmann equation and extend
it to the case where the spin-diffusion length is finite.

We emphasize that the finite spin-diffusion length is nec-
essary in studying the spin Hall effect. To see this let
us consider a current flow in the x direction. The spin-
orbit coupling will generate a spin-dependent transverse
current as discussed above. However, the boundary condi-
tion in the transverse-open-circuit condition requires that
the current for each spin channel vanishes at the bound-
aries. Therefore, it is necessary for the spin current to
decay when the transverse spin current approaches bound-
aries. The decaying of the spin current must be associated
with spin relaxation, i.e., a finite spin-diffusion length is
required. The second justification for us to consider the
spin relaxation is that the anomalous Hall effect requires a
large spin-orbit coupling, but this same spin-orbit coupling
also governs the magnitude of the spin relaxation (or spin-
flip scattering). Therefore, generation of the anomalous
Hall effect and spin-relaxation processes must be studied
on an equal footing.

We begin with a semiclassical Boltzmann equation for
each spin direction in a magnetic metal
vs ? =rf
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where fs�v , r� and f0 are the total and the equilibrium dis-
tribution functions, respectively, Eext is the external elec-
tric field, eF is the Fermi energy, Wss

vv 0 and W2ss
vv 0 are

non-spin-flip and spin-flip scattering rates. We emphasize
that the spatial dependence of the distribution function is
needed even if the scattering rates are spatially independent
within the film, because the distribution function varies as
one approaches the boundaries.

There are two ways to include the spin-orbit scattering
in deriving anomalous Hall effects and the spin Hall ef-
fect. The first is to calculate the scattering rates Wss

and W2ss by taking the spin-orbit scattering into account.
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This leads to skew scattering terms, i.e., W’s containing
asymmetric terms with respect to the incoming and outgo-
ing velocities. The distribution function is found by solv-
ing the Boltzmann equation, Eq. (1), up to second order of
the spin-orbit parameter. After obtaining the distribution
function, the current is calculated by evaluating the inte-
gral js�r� �

R
vfs�v , r� d3v��2p�3. The difference be-

tween the currents derived from fs�v , r� with and without
spin-orbit coupling is the anomalous current. The second
method is to find the distribution function by using the
scattering matrices in the absence of the spin-orbit cou-
pling in Eq. (1), and include the spin-orbit scattering by
an anomalous term in the current, i.e.,

js�r� �
Z

�v 1 vs�v��fs�v , r�
d3v

�2p�3 , (2)
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where vs�v� is the anomalous velocity which can be writ-
ten in terms of the spin-orbit coupling constant a [9],

vs�v� �
ma

ts
v 3 s , (3)

where ts is the electron relaxation time (defined below).
Both approaches have been used to discuss the extraor-
dinary Hall effect and they were shown to be completely
equivalent up to second order in the spin-orbital coupling
constant [10]. Here, we adopt the second approach; i.e.,
we first find the distribution function without spin orbital
coupling and then obtain the current and conductivity from
Eq. (2).

A number of approximations have to be made in
order to solve the Boltzmann equation. First we use the
momentum-independent relaxation time approximation,
i.e., W’s in Eq. (1) are constants. Then the scattering
terms are
Z dv 0
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where f̄s�r� �
R

dVv fs�v , r��
R

dVv , and the
non-spin-flip and spin-flip relaxation times are
1�ts�1�t"#� �

R
d3v 0��2p�3Wss�W "#�. Next we write

the distribution function as the sum of the equilibrium and
nonequilibrium ones,

fs�v , r� � f0�v� 1

µ
2
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where we have introduced two nonequilibrium terms
ems�r� and gs�v , r�; the former is related to the
angular velocity averaged distribution function, i.e.,
f̄s�r� � �2≠f0�≠eF�ems�r� so that

R
gs�v , r� dv � 0.

By substituting Eqs. (4) and (5) into Eq. (1), one obtains
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,

(6)

where Es�r� � Eext 2 =ms�r�. As seen from the above
equation, the separation of the nonequilibrium distribution
function into ems�r� and gs�v , r� results in a redefinition
of a spin-dependent electric field, such that one can
interpret ms�r� as a spin-dependent chemical potential.
To explicitly derive both gs�v , r� and ms�r� from Eq. (6),
we postulate that the spin-flip scattering rate is much
smaller than non-spin-flip rates, i.e., Wss ¿ W2ss ,
or t"# ¿ ts . This approximation is generally valid for
metallic films, as shown in Refs. [1,5]. Then one can
expand Eq. (6) in terms of the orders of ts�t"#. By using
R
gs�v , r� dv � 0 and assuming a spherical (isotropic)

Fermi surface, we find that up to O�ts�t"#�

gs�v , r� � 2etsE�r� ? v (7)

and

=2ms�r� �
ms�r� 2 m2s�r�

�Ds�2 , (8)

where Ds � y
s
F

p
tst"#�3, and y

s
F is the Fermi velocity.

If one replaces s by 2s in Eq. (8) and subtracts the resul-
tant equation from Eq. (8), we can write the spin-diffusion
equation in a usual form,

=2�ms�r� 2 m2s�r�� �
ms�r� 2 m2s�r�

D2 , (9)

where D22 � D"22 1 D#22. This spin-diffusion equation
has first been used by Son et al. [11] and derived by Valet
and Fert [1] in magnetic multilayers. Here we illustrate that
this equation remains valid in the presence of the transverse
electric fields and currents. By inserting Eqs. (3) and (7)
into Eq. (2), we find, after some tedious simplifications,

js�r� � CsEs�r� 1 Cs
h Es�r� 3 s , (10)

where Cs � e2ts�ks
F �3�6p2m is the Drude conductivity

for spin s and Cs
h � e2a�ks

F �3�6p2 is the anomalous
Hall conductivity.

We now apply Eqs. (9) and (10) to a thin film geometry.
Let us consider a film with its length L, width w, and
thickness d as shown in Fig. 1. We assume L is sufficiently
long so that the current in the x direction is uniform and
that the thickness d is much smaller than the spin-diffusion
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FIG. 1. The conductor of length L, width w, and thickness d
carries a steady current along the x direction. Spin accumulation
is detected via a ferromagnetic conductor (probe) attached in the
side of the conductor. The magnetization of the ferromagnet is
pointing to the direction perpendicular to the plane of the film
(up or down).

length D in Eq. (9), so that one can neglect the spin current
perpendicular to the film. Thus we restrict the anomalous
current to the transverse direction in the film plane, and
both currents and the chemical potentials depend only on
y, the coordinate in the film width direction. Furthermore,
we assume that the anomalous Hall conductivity is much
smaller than the Drude conductivity, i.e., Cs

h ø Cs , so
that the current density in the x direction js

x � CsEx (note
that Ex � E"

x � E#
x in this case) is position independent.

From Eq. (10), we find that the current density in the y
direction is

j"y� y� � C"E"
y� y� 2 C

"
hEx (11)

and

j#y� y� � C#E#
y� y� 1 C

#
hEx (12)

and the spin-dependent chemical potentials are, from
Eq. (9),

m"� y� 2 m#� y� � A exp� y�D� 1 B exp�2y�D� , (13)

where A and B are integral constants to be determined
by the boundary condition. In the open circuit condition,
j"y� y� 1 j#y� y� � 0 for all y and js

y �6w�2� � 0. By plac-
ing these relations into Eqs. (11)–(13) and utilizing the
definition of the effective electric fields after Eq. (6), we
find the spin accumulation in the transverse direction is

m"� y� 2 m#� y� �
�C"C

#
h 1 C#C

"
h�Djx

C"C#�C" 1 C#�
sinh� y�D�

cosh�w�2D�
(14)

and the anomalous Hall field is
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The above two equations, (14) and (15), describe the spin
and charge buildups in our thin film geometry.

We now discuss the measurement of these charge and
spin accumulations. The charge accumulation, Eq. (15),
has two contributions. The first term is independent of
position; this is the conventional anomalous Hall effect.
The second term comes from the correction due to finite
spin-diffusion length. If the Hall voltage is measured near
the edge of a sample, an extra Hall voltage is present.
The magnitude of the additional Hall voltage is compa-
rable to the first term (the conventional one) as long as
the spin-up and spin-down conductivities are substantially
different. For the transition metals, Fe, Co, Ni, and their
alloys, �C" 2 C#���C" 1 C#� ranges from 0.2 to 0.5 [12].
It would be interesting to test experimentally how the Hall
field, Eq. (15), varies with the position of the Hall contact.
Such experiments should yield information on the spin-
diffusion length in ferromagnetic metals and on the spin
polarization in these materials.

In a paramagnetic metal, however, the Hall voltage van-
ishes since C" � C# � C�2 and C

"
h � C

#
h � Ch�2. How-

ever, the spin accumulation, Eq. (14), survives since it is
directly related to the spin-diffusion length and exists even
in a paramagnetic conductor:

m" 2 m# � Djx
Ch

C2

sinh� y�D�
cosh�d�2D�

. (16)

Two limiting cases are highly interesting. In the limit of
a small film width, i.e., w ø D as was considered by
Hirsch, Eq. (16) reduces to m" 2 m# � jxwCh�2C2 us-
ing y � w�2. This result is equivalent to that obtained
by Hirsch [6]. When the film width is much larger than
the spin-diffusion length, the spin accumulation reaches a
maximum of jxDCh�2C2 at y � 6w�2, independent of
the film width. This result makes the measurement of the
spin accumulation easier, since one can measure it in a
macroscopic sample. In Fig. 1, we show how the mea-
surement of this spin accumulation can be made by at-
taching a conducting ferromagnetic probe to the sample.
By putting this ferromagnetic probe on the side boundary
of the sample, the average chemical potential (weighted
by the spin polarization of the ferromagnet) will match
the chemical potentials of the sample [13]. Thus if the
magnetization of the ferromagnet is parallel to the spin-
up direction of the accumulation, the chemical potential
395
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VF of the ferromagnet away from the interface between
the ferromagnet and the sample is VF �

�11P�
2 m"� y �

w�2� 1
�12P�

2 m#� y � w�2�, where P is the spin polari-
zation of the ferromagnet. Likewise if one reverses the
magnetization of the ferromagnetic probe, the chemical po-
tential of the ferromagnet becomes VAF �

�12P�
2 m"� y �

w�2� 1
�11P�

2 m#� y � w�2�. The voltage difference be-
tween these two measurements is

dV � VF 2 VAF � P�m"� y � w�2� 2 m#� y � w�2��

� PjxDCh�C2. (17)

As long as the contact dimension is not larger than the scale
of the spin-diffusion length, the magnetic probe will not
disturb the spin accumulation calculated above. Also, we
have chosen a wirelike magnetic probe so that the magneti-
zation of the probe is either pointing up or down: these two
stable magnetization directions can be easily interchanged
by applying a magnetic field. The measurement of the
chemical potentials should be done after the magnetic field
is removed. In this way, there will be no ordinary Hall ef-
fect involved in the probe or in the sample.

Finally, let us estimate the size of the spin accumula-
tion. For a typical transition metal, the ratio of the anoma-
lous Hall conductivity to the conductivity is of the order
of 1022. If we take the conductivity 0.1 �mV cm�21, jx

107 A�cm2, spin-diffusion length 0.1 mm, and we use Fe
as the ferromagnet probe which has P about 50% [12], the
voltage difference between two magnetization directions
would be dV � 2.5 mV. This is easily measurable via
conventional transport measurement methods. We notice
that this voltage is much larger than that Hirsch proposed
in his paper— there he proposed to use higher order effects
to measure the spin accumulation.

For a doped semiconductor, the effect would be much
larger compared to that of metals estimated above. There
are two reasons for the increase: the much smaller conduc-
tance and somewhat longer spin-diffusion length in semi-
conductors [14]. To estimate the spin accumulation, let
us assume that the conductivity of the semiconductor is of
the order of 1 �V cm�21 and the current density is of the
order of 104 A�cm2. If we continue to use Ch�C � 0.01
and 1 mm spin-diffusion length, we find that the voltage
difference between two magnetization directions would be
2.5 mV, 3 orders of magnitude higher compared to that of
metals. Such large voltages may find application in the
magnetic sensor and memory industry.

If the film is magnetic, both spin and charge accumu-
lation will occur as seen from Eqs. (14) and (15). The
charge accumulation can be measured via conventional
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Hall measurement so that one can determine the spin-
dependent Hall coefficient C

"
h and C

#
h. The spin accu-

mulation is again measured via a ferromagnetic probe as
shown in Fig. 1. However, one needs to control indepen-
dently the magnetization directions of the sample and of
the probe. This might introduce some experimental diffi-
culties in achieving parallel and antiparallel magnetization
between the probe and the sample, because they are gen-
erally coupled magnetically.

In summary, the charge and spin accumulations in the
transverse direction are formulated in the presence of
anomalous scattering and spin relaxation. It is found that a
Hall measurement can reveal spin polarization information
in the sample, both magnetic and nonmagnetic. The spin
accumulation can be measured via a ferromagnet probe.
The measured voltage should be much larger than that of
spin injection experiments [2] where a current generated
in a ferromagnet is injected into a normal metal.
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