
VOLUME 85, NUMBER 18 P H Y S I C A L R E V I E W L E T T E R S 30 OCTOBER 2000

38
Derivation and Validation of Mesoscopic Theories for Diffusion of Interacting Molecules
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A mesoscopic theory for diffusion of molecules interacting with a long-range potential is derived for
Arrhenius microscopic dynamics. Gradient Monte Carlo simulations are presented on a one-dimensional
lattice to assess the validity of the mesoscopic theory. Results are compared for Metropolis and Arrhenius
microscopic dynamics. Non-Fickian behavior is demonstrated and it is shown that microscopic dynamics
dictate the steady-state concentration profiles.
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Diffusion of interacting species (molecules or particles)
is of fundamental importance in numerous applications
ranging from colloids, to separations through membranes,
to epitaxial growth, to catalytic reactors. Several of
these processes operate far from equilibrium, where a
macroscopic gradient is imposed or established across the
system as shown schematically in Fig. 1(a). Under such
conditions, gradients in concentration develop. The mass
balance of a diffusing species is ct � 2= ? �2j�, and the
flux j through the system is often described by Fick’s first
law [1]

j � 2DF=c � Do
F�co 2 cL��L , (1)

where DF is the Fickian diffusivity, c is the concentra-
tion, t is the time, L is the system thickness, and Do

F is the
overall diffusion coefficient often determined experimen-
tally from the overall concentration difference (co 2 cL)
and the flux measurement. Equation (1) is also referred to
as a constitutive equation and is often an approximation of
the underlying physics for interacting species. In particu-
lar, Fick’s first law is structurally invalid when two phases
coexist [2]. The latter case can lead to a physically unre-
alistic negative Fickian diffusion coefficient.

To handle such nonequilibrium problems at the molecu-
lar level, a dual control volume grand canonical molecu-
lar dynamics (DCV-GCMD) simulation approach was
recently proposed and applied to numerous examples
involving diffusion of a fluid [3–5] under a gradient in
the chemical potential. Simulations under the condi-
tions performed indicated small deviations from Fickian
behavior that cannot be unambiguously discerned from
the noisy MD data (e.g., [5]). Despite their parallel
implementation, such simulations are limited to short
length and time scales (e.g., several molecular diameters
and nanoseconds). Practical systems such as membranes,
on the other hand, are often several microns in thickness,
and diffusion of slow moving molecules, through a hoping
process, takes place over longer time scales.

Continuous time Monte Carlo (CTMC) simulations on a
lattice (for a review in zeolites, see [6]) can only partially
overcome this length-time scale problem. This difficulty
can be circumvented by the development of a mesoscopic
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transport theory. While such a theory has been proposed
and studied for Metropolis/Kawasaki dynamics [7–9], no
such theory exists for Arrhenius dynamics, which com-
monly occurs for site-to-site diffusion jumps of molecules
on surfaces and in nanopores, and of vacancies and inter-
stitials in solids. Inherent in the derivation of mesoscopic
theories is the fact that the range of the intermolecular
potential is infinite. In practice, however, many systems
exhibit relatively short-range interactions, rendering quan-
titative application of mesoscopic theories uncertain. Cur-
rently, there has not been any quantitative validation of
such mesoscopic theories.

Here we derive for the first time the underlying meso-
scopic theory when diffusion follows Arrhenius micro-
scopic dynamics. CTMC simulations are then outlined for
Metropolis and Arrhenius dynamics on a one-dimensional
lattice under a concentration gradient, as happens, for ex-
ample, in permeation experiments through membranes.
Such nonequilibrium conditions allow us to numerically
assess for the first time the validity of mesoscopic theories
as a function of the range of the intermolecular potential.
Finally, comparison of results allows us to exploit whether
it could be possible to discriminate different microscopic
dynamics experimentally.

First we start with the derivation of the mesoscopic the-
ory for Arrhenius diffusion dynamics, i.e., when the hop-
ping probability depends on the activation energy between
the initial state and the activated complex. This activa-
tion energy is here associated with the departing site x

FIG. 1. Schematic of physical configuration (a) and simulation
box (b).
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(see [10–12] for an application of such Arrhenius dynam-
ics in MC simulations of growth and surface processes).
In particular, the diffusion rate of a particle located at the
lattice site x that migrates to a neighboring empty site y
is y�x ! y� � d exp�2bU�x��, where d is the diffusion
and the energy U�x� is associated with the long-range in-
termolecular potential of adsorbate-adsorbate interactions
J � J�x 2 y�: U�x� � Uo 1

P
zfix J�x 2 z�s�z�. Here

Uo is the energy associated with the binding to the site x,
s�z� � 0 or 1 denotes the occupation number at the lattice
site z, and b � 1�kT , where k is the Boltzmann constant
and T is the temperature. Arrhenius dynamics satisfies
detailed balance and differs from Metropolis or Kawasaki
dynamics, whose hopping rate depends on the difference
U�x� 2 U� y�. A more complex dependence of the ac-
tivation energy on the energetics of adjacent sites is also
possible and will be discussed elsewhere.

The mesoscopic theory is directly derived from the mas-
ter equation as an evolution for the local coverage Est�x�
(or equivalently the probability of the site x being occu-
pied) when the lattice size h vanishes; here E denotes
the expectation with respect to the initial measure. We
give a formal description of the derivation, whereas a
mathematically rigorous proof obtained using the corre-
lation function method will appear elsewhere. From the
master equation we obtain ≠tEst�x� �

P
y[N�x� E�st� y� 2

st�x��y�x ! y�, where N�x� denotes the nearest neigh-
bors of x. When the interparticle potential is long range
the fluctuations of st�z� around their averages become in-
dependent, the law of large numbers formally applies,
and

P
zfix J�x 2 z�st�z� �

P
zfix J�x 2 z�Est�z�. In ad-

dition, there is a normally distributed correction term of
order O�hk�2�, in a k-dimensional lattice, due to the cen-
tral limit theorem asymptotics. Rescaling time as t !
th22 and using the closure approximation Est�x�st� y� �
Est�x�Est� y�, we obtain that as h vanishes, Esth22 �x� �
c�hx, t�, and c solves in the continuum space (the poten-
tial length has to be small compared to the domain length)

ct 2 = ? �De2bJ�c�=c 2 bc�1 2 c�=J � c�� � 0 ,
(2)

where D � de2bUo and J � c denotes the convolution.
It is easy to see that c is also the probability density of
the occupation number. We may also include the random
fluctuations for the local coverage, in which case Eq. (2)
becomes a stochastic PDE with the added random cor-
rection term hk�2= ? ��2De2bJ�cc�1 2 c��1�2 �W�. Here �W
denotes a k-dimensional space/time white noise.

By introducing the free energy (note that r , r 0 denote
points in continuum space, whereas x, y, and z denote
lattice points)

E�c� � 2
ZZ

J�r 2 r 0�c�r�c�r 0� dr dr 0�2

1 b21
Z

�c lnc 1 �1 2 c� ln�1 2 c�� dr ,

the flux can be written as j � 2m�c�=�dE�c��dc�.
Here the mobility term is nonlocal and given by m�c� �
Dbc�1 2 c� exp�2bJ � c�. In contrast, it was rigorously
shown in [9] that for all diffusion dynamics where the
migration rate depends on the energy difference, U�x� 2

U� y�, such as Kawasaki and Metropolis, the mobility is
local and proportional to c�1 2 c�. For such dynamics
[9], the coverage on the lattice site x solves, as the lattice
size h vanishes, the following mesoscopic equation

ct 2 d= ? ��=c 2 bc�1 2 c�=J � c�� � 0 . (3)

According to Eqs. (2) and (3), the flux j for Arrhenius
and Metropolis dynamics is, respectively,

j � 2e2bJ�cD�=c 2 bc�1 2 c�=J � c�

and j � 2d�=c 2 bc�1 2 c�=J � c� .
(4)

Local stability analysis of uniform states of Eqs. (2)
and (3) has also been performed. By considering a
perturbation ´evt1ijx to a uniform solution c, the dis-
persion relation obtained for Arrhenius dynamics is v �
2jjj2De2bJo �1 2 bc�1 2 c�Ĵ�j��, where Ĵ is the
Fourier transform of J. The corresponding dispersion
relation for Metropolis/Kawasaki dynamics lacks the
Boltzmann factor (and has d instead of D), indicating that
instabilities of uniform states during phase separation can
grow much faster in this latter case.

A Taylor expansion in the concentration c gives that
the convolution is J � c � Joc 1 J2=2c 1 · · · , where
Jo �

R
J�r� dr and J2 �

R
r2J�r� dr�2 are the zero and

second moments of the potential (note that we use the same
notation for the discrete and continuum version of the en-
ergy U). When the concentration varies slowly (or in a
suitable scaling regime [8]), then U � Joc. Under such
conditions, the flux can accurately be described by simpli-
fying Eqs. (4), respectively, as

j � 2e2bJocD�1 2 bJoc�1 2 c��=c

and j � 2d�1 2 bJoc�1 2 c��=c .
(5)

The prefactor of the concentration gradient shows the con-
centration dependence of an effective diffusion coefficient.

Next we describe the CTMC simulations. The main
simulation box (line in 1D) has two boundary nodes and is
augmented by two boundary segments of length equal to
the potential range, as shown schematically in Fig. 1(b).
Each boundary segment and boundary node represents a
semi-infinite domain of prescribed concentration. Below
simulations with boundary conditions co � 1 and cL � 0
are reported since they establish the maximum possible
gradient (far from equilibrium conditions). The total tran-
sition probability per unit time for the main simulation box
is for Arrhenius and Metropolis dynamics, respectively:

G � Go

X
lattice

e2bUi si�2 2 si11 2 si21� , (6a)

G � Go

X
lattice

si�Pi!i11�1 2 si11�

1 Pi!i21�1 2 si21�� , (6b)
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FIG. 2. Concentration (a) and energy (b) vs distance at various
values of the intermolecular potential range n for Arrhenius
dynamics and bw � 1.

where Pi!j � e2b�Ui2Uj � when Uj 2 Ui , 0 and 1 oth-
erwise (note that here U . 0 for attractive interactions).
Here 2Go is the total transition probability of jumping per
unit time in the absence of interactions. When an event
involves a boundary node, after the move the occupation
function at the boundary node is instantly reset to its speci-
fied value. To properly compute the average lifetime of a
lattice configuration, the summations restrict species at the
boundary nodes to jump only into the main domain.

The execution of the algorithm proceeds as follows (a
general introduction to the CTMC algorithm is given in
[13]): The total transition probability per unit time is first
computed, and a random number is used to select which
atom (among the diffusing ones) will move. When there
is only one empty adjacent site to the selected molecule,
the hop takes place to this site. When both adjacent sites
are empty, a second random number is used to decide the
direction (left or right). This number is compared to the
probability of one direction normalized by the sum of both
directions (note that the transition probabilities to adjacent
sites are generally different for Metropolis dynamics). Fol-
lowing a successful MC event, the time is incremented by
an average expectation time of 1�G. After steady state has
been reached, the temporally averaged concentration and
energy at each lattice point are computed for 106 MC steps.

In the limit of no interactions, random walk theory gives
d � 2Goh2�2, where h is the lattice size. In the simula-
tions reported, the parameters were chosen to be h � 1
and Go � 1 (these values affect only the absolute value of
j). For demonstration of ideas, the potential considered is

FIG. 3. Concentration (a) and energy (b) vs distance at various
values of the intermolecular potential range n for Metropolis
dynamics and bw � 1.
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a step function, J�x 2 y� � w�n when jx 2 yj # n and
x fi y, and zero for longer distances. Here n denotes the
range of the potential. For the discrete lattice case, n is
the number of lattice points considered in determining the
energy U. With this choice of potential, the convolution
keeps the same value, for a uniform distribution of species
as the range of the potential changes.

In the presence of attractive interactions considered here,
a single-valued isotherm exists under equilibrium condi-
tions for weak intermolecular potentials (bw , 2) [7,9].
In contrast, a bistable isotherm develops, within which
spinodal decomposition is observed when bw . 2. The
steady-state profiles obtained from CTMC for bw � 1
are shown in Figs. 2 and 3 for various values of the in-
termolecular potential range. For comparison purposes,
the straight diagonal line in Fig. 2 represents the Fickian
case (w � 0). It is seen that Arrhenius dynamics results
in significant deviations from the Fickian behavior. As
the range of the interactions increases, deviations rise and
approach an asymptotic behavior at n 	 10 20, where
the differences in concentration are small to discern from
the simulations. Figure 3 shows the corresponding results
for Metropolis dynamics. Interestingly, both the concen-
tration and energy profiles exhibit only small deviations
from the Fickian case. Furthermore, it appears that the
potential length is of secondary importance in affecting
the concentration profile. Because of the significant differ-
ence in profiles between Arrhenius and Metropolis dynam-
ics, measurement of steady-state concentration profiles,
although difficult in many instances, can be used as a fin-
gerprint of the microscopic dynamics. Such a large differ-
ence is solely caused by the Boltzmann factor in Eq. (2).

We now turn to the flux which is a quantity of practi-
cal interest. Figure 4 shows an example of the flux com-
puted directly from the CTMC simulations by counting
the number of molecules jumping via the interface be-
tween adjacent sites over a period of time. The steady-state
flux is spatially constant throughout the domain with small
noise. By smoothing the concentration and energy profiles,
their derivatives are computed, and the components of the
flux can be deduced, as shown in Fig. 4. As the potential
range increases, the flux converges to an asymptotic value
(mesoscopic behavior) that is practically achieved with a
potential range greater than 	10 neighbors for Arrhenius

FIG. 4. Flux from CTMC simulations and its components for
bw � 1.
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FIG. 5. Concentration vs distance from CTMC and the meso-
scopic theories at various values of the intermolecular potential
strength. The error bars indicate the standard deviation in MC
results at selected spatial locations.

dynamics and 	20 for Metropolis dynamics. Note that
due to subtractive contributions of concentration and en-
ergy gradients, overall the flux is only weakly sensitive on
the intermolecular potential range (up to a few percent dif-
ference in flux from the asymptotic value is found even for
n � 1).

With an asymptotic value of n identified, next in Fig. 5
we compare the steady-state solution of the mesoscopic
Eqs. (2) and (3), solved using a second-order finite dif-
ference scheme, with the CTMC for various values of the
potential strength w. The observed deviations in concen-
tration and energy (not shown) are small for both types of
microscopic dynamics. Up to 	10% deviation between the
mesoscopically and molecularly computed fluxes has been
found for all bw, despite the large concentration gradients
within the spinodal decomposition regime (bw $ 2).

Attractive interactions reduce the actual flux compared
to the Fickian case. As a result, the overall diffusion coef-
ficient Do

F can be significantly lower than the Fickian one.
For example, d�Do

F 	 1.5 (Metropolis) and D�Do
F 	 3.3

(Arrhenius) for bw � 1, and d�Do
F 	 8 (Metropolis)

and D�Do
F 	 25 (Arrhenius) for bw � 3. Thus, in

the presence of strong attractive intermolecular forces,
the diffusivity can be significantly underestimated when
interactions are ignored in the analysis of experimental
data. A plot of Do

F�D vs bw in Fig. 6 shows that only
Arrhenius microscopic dynamics leads to a real Arrhenius
behavior. Metropolis dynamics can, however, be fitted
with an Arrhenius plot over a relatively narrow temperature
range.

In summary, we derived a mesoscopic equation when
the microscopic dynamics follows Arrhenius behavior.
Gradient Monte Carlo simulations were performed for
Arrhenius and Metropolis dynamics. It was found that the
mesoscopic theory describes quantitatively the concentra-
tion and energy profiles for potentials with relatively short
interaction range. The flux is described accurately even
for first nearest-neighbor interactions. Finally, macro-
scopic concentration profiles are a distinct fingerprint,
and could allow for experimental discrimination, of the
microscopic dynamics. The mesoscopic Eq. (2) is valid
FIG. 6. Arrhenius graph.

in k dimensions. Our choice for 1D MC simulations
was primarily motivated by our asymptotics which show
that the stochastic correction to the mesoscopic equation
is O�hk�2�, i.e., the worst-case scenario is the 1D. In
fact, 2D simulations even with first nearest neighbors
show similar concentration profiles, but improved agree-
ment when compared to the mesoscopic theory. These
dimensionality aspects will be discussed in detail in a
forthcoming publication.
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