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The dynamics of spin diffusion in a fluid is governed by the Torrey-Bloch equations, and the solution
is often expressed mathematically in an eigenmode expansion. We report an experimental demonstration
of the excitation and detection of a wide range of eigenmodes in porous media by exploring the inhomo-
geneous internal magnetic field in the pore space. The nodal character of the eigenfunctions of the high
eigenmodes was clearly observed. The methodology of excitation and detection of the high eigenmodes

may be used to better characterize pore geometry.

PACS numbers: 66.10.Cb, 05.40.—a, 76.60.—k

The possibility of determining the boundary geometry
of a diffusing fluid has been of great mathematical inter-
est [1], as well as physical significance in understanding
porous materials. The mathematical solutions of the dif-
fusion equations are often expressed in an eigenmode ex-
pansion [2]. The lowest eigenmode can be detected via
diffusion and relaxation of spin magnetization [3-5] for
the determination of one of the most important length
scales, surface-to-volume ratio ({(S/V)) of porous materi-
als. A diffusion propagator can also be used to determine
the periodicity and sizes of pores [6—8]. The detection of
some of the high modes has been demonstrated recently to
determine the multiple length scales existing in sedimen-
tary rocks [9]. It is likely that the properties of the high
eigenmodes, such as the spectral density and the functional
form of the eigenfunctions, hold the key for a complete
characterization of the pore geometry.

In this Letter, we demonstrate the excitation of a wide
range of diffusion eigenmodes with the decay time con-
stant (eigenvalues) ranging over 4 orders of magnitude,
using a nuclear magnetic resonance technique. In addition,
the spatially oscillatory characters of the eigenfunctions of
these modes were observed. Our experimental method is
simple and can be applied to many porous materials to
study pore geometry.

One of the crucial elements of this experiment is the
presence of the inhomogeneous magnetic field (B?) in the
internal pore space due to the susceptibility difference be-
tween the pore-filling fluid or gas and that of the solid in
a uniform external magnetic field [10]. Since it is created
by the pore structure, the variation of B’ occurs over the
primary length scales of the pore space [11]. The diffusion
of a spin inside a pore can then be detected by observing
the change of its Larmor frequency, yB' (y is the gyro-
magnetic ratio).

The diffusion of the longitudinal nuclear spin magneti-
zation is governed by the Torrey-Bloch equation [12]

%m(r, 1) = DVim(r,t) — um(r, 1), (1

where D is the bulk diffusion constant and w is the bulk
spin relaxation rate. m is the magnetization deviation
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from its equilibrium. A solution can be found in the
general form

m(r,1) = e MY Aupu(r)e /™, )
n=0

where ¢, and 7, are eigenfunctions and eigenvalues. ¢,
is normalized: [ ¢,(r)>dr = 1. The eigenvalues are de-
termined by the boundary condition: D#a - V¢, = p d,,
where 71 is the unit vector normal to surface and p is
the surface relaxivity. The intensity of each mode is
determined by the initial magnetization, m(r,0): A, =
[m(r,0)¢,(r) dr. 1t has been shown that the decay rate
of the lowest mode is approximately p(S/V) + u, while
the higher modes are less sensitive to p and determined
primarily by geometry [3,4,13,14]. Furthermore, ¢¢(r) is
approximately a constant throughout the pore, while the
high-mode eigenfunctions oscillate [13—15].

A direct way to generate high eigenmodes is to selec-
tively excite spins within a narrow frequency range and the
evolution of the Larmor frequency spectrum of these spins
is then monitored [16]. Under such selective excitation,
m(r,0) is not constant within pores; thus the amplitude of
the high eigenmodes can be finite. Consider a spin at r’ at
time zero. Then, A, = ¢, (r'). The evolution of this spin
is governed by [14]

mrt;r') = 3 $u(r)bu(r)e” /™. (3)
n=0
This function is often called the propagator of the magne-
tization diffusion [10,17].
We assume the excitation is sharp in frequency domain
and centered at f = 0 [B(r') = 0]. Thus,
)= § @Y e @)
Bi(mM=0 =)
This magnetization modulation can be detected by a
free-induction-decay (FID) signal: S(t,t') = [m(r,t) X
expliBi(r)t']dr, as a function of /. Taking a Fourier
transform of S(z, ¢') with respect to ¢/, and then an inverse
Laplace transform with respect to ¢,

S(f,7n) = (Du(£)Du(0)), ®)
where @,(f) is the spectrum of the nth mode:
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&, (f) = [dr [dr ¢(r)expli(yB' — 27 f)!']. The
angle brackets denote ensemble average as explained
below.

Since the excitation is localized in the frequency do-
main, we make the following assumption about the loca-
tion of the excitation. Because B varies over the pore
dimension, the locations with y B’ matching the excitation
frequency are isolated lines [11]. Other pores may have
a different B profile and the excitation locations will be
different. Hence, integration over all pores serves as an
ensemble average of the location of the initial excitation.
The finite frequency width of the excitation pulse limits the
highest excited modes to those having a wavelength longer
than the size of the excitation spot.

Equation (5) can be simplified for known B’. For
example, if B’ has a constant slope g, then the spectrum
S(f,7,) is directly the spatial correlation function of
the eigenmodes, S(f,7,) * (b,(f/v8)Pn(0)).  This
condition is most likely satisfied for small distances and
equivalently small frequency shifts.

The nuclear magnetic resonance experiment consists of
two radio frequency pulses, inversion and detection pulses,
separated by a time t. The magnetization modulation
was first created by the inversion pulse, then after time ¢,
inspected by acquiring a FID signal, S(z, '), following the
detection pulse. The inversion pulse (7)) is typically 1 ms
long and the detection pulse is 20 us. The amplitude of
the inversion pulse is approximately 1/100 of the detection
pulse. The detection pulse excited the entire resonance
line while the inversion pulse excited only a bandwidth of
approximately 1 kHz, much narrower than the spectrum
width of the sample. The sample used was randomly
packed glass beads (Duke Scientific) of 50-um diam
saturated in water in a 5-mm glass tube. The experiments
were performed on a Bruker DMX400 spectrometer at a
"H Larmor frequency of 400.1 MHz. The spectral width
at half magnitude (FWHM), Afy = 3.5 kHz, is domi-
nated by the internal field. A series of 100 logarithmically
spaced ¢t were used.

The inversion bandwidth was found to vary as a func-
tion of #,, shown in Fig. 1, determined from the spectra
(Fig. 1 inset) acquired 0.2 ms after the pulse. We found
the narrowest inversion bandwidth at #, = 1-3 ms. This
is expected since the spectral width of the pulse and the
diffusion distance are dependent on ¢,. The broadening
due to diffusion during the pulse can be estimated:

\6Dt1,
d 9
where d is the bead diameter. Thus, including the
spectral width (1/t,) of the pulse, the inversion band-
width is (Af% + 1/ 112,)1/ 2, in good agreement with the
data (Fig. 1). The minimum bandwidth should occur at
t, = (d*/12Af3D)'/? = 1.9 ms, also consistent with the

data. However, at long time when the diffusion distance
is close to d, Eq. (6) will fail and Af — Afp.

Af = 2Af

(6)
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FIG. 1. The FWHM (dot) of the inversion profiles as a func-

tion of the inversion pulse length 7,. The sum (solid line) of the
spectral (dotted line) and diffusional (dash-dotted line) contribu-
tions agrees with the data. Inset: Frequency spectra detected at
0.2 ms after the inversion. f, is 0.25, 2, and 15 ms as labeled.
The equilibrium spectrum is shown as the solid line.

The spectral evolution after the selective inversion was
shown in Fig. 2. For the shortest ¢, the spectrum reflects
mostly the profile of the inversion pulse centered at f = 0.
For short t’s, we observed a rapid recovery of the in-
tensity at f = 0 and a decrease of the intensities around
f = =1 kHz, and thus a significant change in the shape of
the spectrum. However, the integrated intensity does not
change much because ¢ is much less than the spin-lattice
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FIG. 2. Frequency spectra detected a ¢ time period after the
inversion. The inversion pulse was 1 ms long (¢,) and at zero
frequency offset.
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relaxation time. This movement of intensities among dif-
ferent parts of the spectrum is unambiguously due to water
diffusion. At t ~ 0.1 s, the spectral shape returns to ap-
proximately that of the equilibrium spectrum, suggest-
ing that the magnetization distribution is mostly uniform
within individual pores. This observation indicates that
the magnetic field inhomogeneity is over a distance of the
order /Dt = 15 um, the single pore length scale.

Figure 3 shows the ¢ dependence of signals at several
frequencies. At f = 0, we observed a monotonic recovery
of the signal as a function of ¢. For frequencies away from
zero, the intensity decreases first, e.g., farther away from
their equilibrium values, before they recover toward the
equilibrium. This indicates that these frequencies represent
locations close to the inversion points and the exchange
of magnetization occurs via diffusion. Farther away from
the center, the signals do not change much as a function
of ¢ indicating that those positions are far away from the
inversion points and there is no significant exchanges of
magnetization through diffusion.

Furthermore, from Fig. 3, it appears that although most
of the line shape changes have occurred before t = 0.1 s,
there is still significant difference between the data at dif-
ferent frequencies up to 2 s, which corresponds to a dif-
fusion distance of almost 200 wm. This indicates that the
inversion pulse also excited some long wavelength modes
across several pores. These long wavelength modes are
not explained by the isolated pore picture outlined by
Brownstein and Tarr [15] because the first excited mode
would have a time constant of about 0.1 s. Their pres-
ence is due to the connectivity of the pores in the packed
bead sample and the result of the coupling of modes in the
nearby pores. These modes have been studied theoretically
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FIG. 3. The recovery of the normalized signals [S(f,)/

S(f,)] for several frequencies as a function of ¢. The
frequency offsets (in units of kHz) are labeled in the graph.
The normalized total signal intensity is shown as the solid line.
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[18] and were shown to form a band similar the electron
band structure in solids. The decay rate of these modes is
~Dssp? + 1/79, where p is the wave vector [18].

In order to analyze the character of the diffusion modes
quantitatively, we have subtracted the contribution of the
lowest mode [So(f,?)] from the data. Then, numerical
Laplace inversion is performed for each frequency along
the ¢ dimension. The transform is done by fitting to the
form > a, exp(—t/7,) using 100 values of logarithmically
spaced 7,. The fit is stabilized by a regularization term and
allows both positive and negative amplitudes. The result of
the transform is shown in Fig. 4A for the two-dimensional
spectrum and several of the slices are shown in Fig. 4B for
7, = 0.0003,0.002,0.01,0.04,0.2, and 1 s.

The oscillatory character is evident in Fig. 4. The ap-
parent asymmetry for positive and negative frequencies is
due to the inversion frequency being on the high frequency
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FIG. 4. (A) The two-dimensional spectrum of the diffusion

modes, S(f,7,) — So(f,7.), excluding the contribution from
the lowest modes. The white dashed line illustrates the change
in the frequency of the minimum. (B) The frequency spec-
tra of the diffusion modes, S(f,7,) — So(f,7,), with 7, =
0.0003,0.002,0.01,0.04,0.2, and 1s. The dashed line goes
through the minimum of each spectrum illustrating the changes
of the period as a function of 7,,.
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shoulder of the spectrum. At f = 0, all the coefficients are
positive [Eq. (5)]. As f decreases from zero, S decreases
and becomes negative. The oscillation occurs for several
cycles at small 7,. The period of this oscillation is re-
lated to the spatial period of the specific eigenfunctions,
¢, and the change in the period is clearly shown in Fig. 4
where the modes of short 7, exhibit more rapid oscillation
and the long 7, modes do slower. This observation con-
firms that the faster decaying modes are indeed of shorter
spatial wavelength. For 7,, < 0.001 s, the position of the
negative valley does not appear to change for different 7,
because of the diffusion during the acquisition time of ap-
proximately 0.5 ms. This gives the minimum diffusion
distance (~3 um) detectable by the current method at this
magnetic field.

The period reaches a maximum at 7, = 0.03 s, cor-
responding to a linear distance of 7+/D7, = 27 um.
We speculate that the maximum period occurs when the
wavelength of the ¢, matches the principle pore dimen-
sion, pore size. This is quite consistent with the diameter
(0.828a = 21 um) of the largest secondary sphere that
can be fit into the close-packed structure [19].

For 7, > 0.04 s, the period becomes smaller again to
7, = 0.2 s before it increases for larger 7,. This part of
the spectrum is from the long wavelength eigenmodes [18].
However, the origin of the peculiar change of the period
is unclear, possibly related to the semiperiodic nature of
B'. When the wavelength equals the distance between the
nearby pores, one might expect that the period along the
frequency axis is the minimum. The length scale corre-
sponding to 7, = 0.2 s is /D7, = 70 um, a distance
slightly larger than the bead diameter (50 um), the peri-
odicity of the pores. When the wavelength is even longer,
the excitation intensity of such modes reduces since the
spatial Fourier components of the internal field diminishes
at such a long wavelength.

In conclusion, the eigenmode spectrum of diffusion em-
bodies the rich details about the boundary geometry and
various parts may yield information on the characteristic
length scales. This is in close analogy to the case of quan-
tum mechanics where the energy-level spectrum and den-
sity of states are considered of prime importance to the
understanding of atoms, molecules, and solids. This work
demonstrates a simple and general methodology for the

manipulation and detection of a wide range of the eigen-
modes of diffusion with decaying time constants spanning
4 orders of magnitude (1-107*s). A better understand-
ing of such eigenmodes may enable a more complete
characterization of the pore space in natural and man-
made materials.
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