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The size of a zero-thickness (no excluded volume) nonphantom polymer ring is shown to scale with
chain length N in the same way as the size of the excluded-volume (self-avoiding) linear polymer, that
is, as Nn , where n � 0.588. The consequences of this fact are examined, including the sizes of trivial
and nontrivial knots.

PACS numbers: 61.41.+e
Knots have entertained physicists and mathematicians
for one and a half centuries, since Thomson [1]. In a
more specific context, knotted polymers and DNA have
remained at the center of attention for over three decades
[2–4]. Nevertheless, many simple basic questions remain
unanswered. For instance, the most fundamental physi-
cal property of any macromolecule—its size R�N� (e.g.,
mean-squared gyration radius), which scales with chain
length N and depends on the solvent conditions —is not
understood for knotted polymers. It is worth emphasizing
that mere ends closure does not affect scaling of R�N�, but
reduces it only by a factor (

p
2 for Gaussian chain). It has

been conjectured theoretically [5] that quenched topology
may have a much more serious effect and alter the scaling
of polymer size. Some evidence supporting this conjecture
came recently from simulations [6].

Our goal in this paper is to address on the scaling level
the following problem, whose formulation is elementary:
Given the polymer ring of a quenched topology, we want
to estimate its average size. Consider the simplest ring
polymer with no excluded volume, consisting of some N
freely joined straight segments, length l each [7]. Assume
that every spatial shape, or conformation, of this polymer
is just as likely as any other. In mathematical language,
our “polymer” is simply a closed broken line embedded
in 3D. With probability 1, this object does not have self-
intersections, and, therefore, represents a knot, trivial
(topologically equivalent to a circle) or nontrivial. It was
proved as early as in 1988 [8] that the probability of a
trivial knot configuration decays exponentially with N :

ptk�N� � exp�2N�N0� , (1)

where the subscript tk stands for “trivial knot” and a con-
stant N0 is a characteristic length. Similar exponential
dependence on N , albeit perhaps with a different value
of N0, holds also for other models, such as a smooth
wormlike ring object of the length Nl with effective seg-
ment l [9], the system of straight segments with Gaussian
distributed random lengths [10], etc. Mathematical pre-
diction (1) has been beautifully confirmed in computer
simulation [11], yielding N0 � 340 6 4 for one particu-
lar model.

One of the important consequences of the result (1) is
that we cannot use the continuous model (the Wiener tra-
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jectory), since it corresponds to the limit N ! `, l ! 0,
Nl2 � const, because in this limit all conformations (apart
from the fraction of measure zero) are heavily knotted, or
trivial knot probability is exactly zero.

While rigorous proof of the result (1) is not simple, it
can be readily understood on a hand-waiving level. Indeed,
consider our polymer as a sequence of N�g blobs, with g
segments in each blob. The probability of trivial topol-
ogy for each blob is ptk�g�, and formula (1) is equivalent
to saying that ptk�N� � �ptk�g��N�g, which means that
topological constraints between blobs are negligible com-
pared to those between segments inside each blob. The
temptation is then to conclude that the vast majority of
knots occur on small length scales. Care should be ex-
ercised, however, while using this jargon in this context:
Indeed, while the blob may be much smaller than the en-
tire polymer g ø N , the argument above holds only if
it is large compared to N0 �g ¿ N0�, which itself is nu-
merically large.

The exponentially small probability of a trivial knot (1)
immediately explains why topological constraints can sig-
nificantly alter the polymer size. Indeed, lN1�2 is the size
averaged over all conformations, while the size of a trivial
knot is an average over an exponentially small subset of
conformations. When relatively compact complex knots
are removed, the remaining average increases. In order to
bring this idea to a quantitative level, a couple of further
preliminary arguments will be handy.

To begin with, consider an auxiliary problem of two ring
polymers, with N segments each. They form a link, triv-
ial (nonconcatenated) or nontrivial. If rings overlap, i.e.,
the distance between their centers of mass is smaller than
their sizes, the probability that the link is trivial vanishes,
ptl�N� ! 0, when N ! `. While the exact expressions
for ptl�N� are not known, it should be qualitatively simi-
lar to the trivial knot probability (1), and we assume that
the corresponding characteristic chain length N1 is of the
order of N0 [see also Eq. (7) below].

In speaking about the trivial link probability, one has to
make the distinction between a link made by two rings,
each of which may be an arbitrary knot, and a link made
by two trivially knotted rings. Since the former probability
is higher, and goes to 0 for large N , the latter, which we
use below, goes to zero as well.
© 2000 The American Physical Society
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Since trivial link topology is highly unlikely for overlap-
ping rings, the untangled ring polymers effectively present
excluded volume for each other, even if there is no bare
excluded volume for monomers. Simple scaling argument
suggests that the excluded volume can be estimated as

yexcl�N� � R3�N� �1 2 ptl�N�� , (2)

where R�N� is the (properly averaged) size of one ring.
The concept of “topological excluded volume” was intro-
duced in one of the first works on computer simulation of
knots and links [12]. It can be easily understood in terms
of an exactly solved model [13,14] in which one polymer
is a ring and the other is a straight line. It has recently been
rigorously proven [15] that the excluded volume scales as
R3�N� in N ! ` limit for two rings if their Gaussian link-
ing number remains zero, even though this condition does
not guarantee the untangled topology. As regards Eq. (2),
it is actually almost trivially correct. Indeed, 1 2 ptl�N�
is the probability for two phantom rings to be tangled, i.e.,
to adopt a conformation prohibited for real (nonphantom)
untangled rings [16].

We are now prepared to directly attack the question of
the size Rtk�N� of a trivial knot without excluded volume.
Let us color two different pieces of our N-segment ring,
both containing some g �1 ø g ø N� monomers (seg-
ments). Since neither of the pieces has open ends, they
present uncrossable objects for one another. Therefore, the
arguments above apply and suggest that these two pieces
exclude for each other some volume which is of the or-
der of yexcl�g�. While this identification of the pieces of
a ring chain with separate small rings may be doubtful
for small g, we expect it to become increasingly accurate
with increasing g, especially when g becomes greater than
N0. In that case, ptl�g� is negligible, and we end up with
yexcl�g� � R3�g� for g . N0, which immediately implies
that the chain of g blobs belongs to the universality class
of self-avoiding walks, and thus

Rtk�N� � R�g� �N�g�n , where n � 0.588 � 3
5 . (3)

We expect this to hold at g . N0, while at smaller scales
the effect of topological constraints is only marginal. Thus,
we assume R�g� � lg1�2 for g up to about N0 and apply
the above result (3) choosing g � N0:

Rtk�N� �

(
lN1�2 if N , N0

lN
2n11�2
0 Nn if N ¿ N0

. (4)

Thus, chain size in the case of trivial knot topology is con-
trolled by the standard excluded volume exponent close to
3
5 . This confirms the conjecture made by J. des Cloizeaux
as early as in 1981 [5]. We see also that this “swollen”
regime comes only for really long chains, because N0
is numerically large [11]. Furthermore, while in terms
of parameters the crossover to the swollen asymptotic is
controlled by N0, there are grounds to expect that this
asymptotic actually develops at N around a few times
N0 [which we expressed with the ¿ sign in formula
(4)]. On the other hand, although topological constraints
lead to swelling only when N is really large, the prefac-
tor in the second line of formula (4) is of order unity:
N

2n11�2
0 � 34020.088 � 0.6.
The result Eq. (4) is also in good agreement with the

recent work [6]. It reports simulation data for the ring
polymer which preserves the topology of a trivial knot, but
does not have any width (excluded volume). The average
size of this polymer has been measured for a series of
lengths N � 2n, ranging from 32 to 2048 monomers. The
sizes of N-mers were found to follow Gaussian statistics,
N0.5, for small N �n � 5, 6, 7�, then the dependence was
slowly getting sharper, and finally the ratio of the sizes of
2048- and 1024-mers was close to 20.58.

Consider now some nontrivial knot, still without any ex-
cluded volume. This can be addressed using the so-called
“tube inflation” or “ideal knot” approach. This idea has
been proposed in several contexts, in the aspect address-
ing knot entropy it was suggested in [17]. Recently, an
entire book [18] was devoted to the subject. In particular,
the present author’s contribution in this book addressed
the size of an arbitrary knot. However, the result (4) was
not established at the time; instead, the size of an arbi-
trary knot was estimated under the assumption that the size
of a trivial knot scales as Nm with an unknown exponent
m. We can now directly use the results of the author’s
work in [18], simply substituting m � n there. To make
the present work self-contained, we repeat the argument
briefly.

When polymer is a knotted ring, fluctuations of each
segment are restricted by the neighboring segments. Fol-
lowing the standard trick of the reptation theory [19], we
replace these constraints by an effective tube confining the
entire polymer. The difficult part of the problem is that,
unlike the usual case of a melt [19], the tube shape for
the swollen single chain fluctuates very strongly, and we
have to find a reasonable approximation for it. To this
end, we argue that there are two possibilities to achieve
maximal entropy, corresponding to “uniform” and “phase
segregated” [20] structures. Let us explain the meaning
and examine both possibilities one by one.

We call the structure uniform when the freedom of trans-
verse fluctuations is about the same everywhere along the
polymer. That corresponds to finding the maximal diame-
ter D for which the tube of the length L can be knotted into
the given knot without self-penetration. The shape of this
“maximally inflated” tube, or the shape of its central axis
line, is called “ideal representation of a knot.” It is char-
acteristic of the topology, and so is this tube “axis ratio”
p � L�D.

Thus, we replace the real topological constraints with
the confinement within the tube whose aspect ratio p is
that characteristic for the given knot topology. The tube is
closed, and the polymer makes exactly one turn within the
tube. We assume further that the polymer is not knotted
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inside the tube [21]. These two conditions together guaran-
tee that the polymer has exactly the desirable topology. We
can now determine the overall size of the polymer in space,
R, using the following Flory-style argument: When R in-
creases, the polymer loses entropy because it gets stretched
along the tube axis; when R decreases, the polymer loses
entropy because it gets squeezed perpendicular to the tube
axis. Thus, the equilibrium size R can be conjectured
to balance these two entropic factors. To implement this
idea, we choose D and L such that LD2 � R3 and, since
L�D � p, that means L � Rp2�3, D � Rp21�3. We fur-
ther recall that the unknotted polymer behaves just as an
excluded volume one on large scales. That allows us to
employ the standard scaling arguments [22] to estimate
the relevant entropy. Specifically, transverse compres-
sion and longitudinal stretching in the tube are associated
with, respectively, concentration blobs and Pincus tension
blobs:

S � 2

µ
L

Nn

∂1��12n�
2

µ
N3n

LD2

∂1��3n21�
. (5)

Provided the above expressions for L and D, this entropy
has a maximum with respect to R at R � lNnp2n11�3, and
we identify it as the average size of the knot. This result
applies as long as each of the aforementioned blobs re-
mains larger than N0 monomers. Equivalently, the equilib-
rium tube diameter D should be greater than lNn

0 , yielding
N . pN0. For smaller blobs, Gaussian statistics should
be valid, which means physically that we can consider a
phantom [16] polymer confined within the tube. This case
has been already examined in [17]. Collecting everything
together, we obtain

Rk�N� �

(
lN1�2p

21�6
k if N , pkN0

lN
2n11�2
0 Nnp

2n11�3
k if N . pkN0

, (6)

where we have included the subscript in pk to emphasize
that this parameter is taken for the given knot k.

Thus, in terms of N dependence in the limit of very large
N , every knot acts as an effective excluded volume, mak-
ing the exponent equal to n � 0.588. However, more com-
plex knots, with larger p, are significantly less expanded
than trivial or simple knots. Furthermore, for complex
knots the onset of swollen behavior is pushed to the range
of really long chains. These results are consistent with nu-
merical observation [11,23] suggesting that the probability
of any particular knot, and not only the trivial one, decays
exponentially at large N (1), with the characteristic length
N0 independent of the knot type. Qualitatively, one can
say that increasing N for the polymer with any given topol-
ogy eventually leads to the situation when the polymer is
dominated by very long strings in which knot restriction
is not felt at all, and thus it should become in this sense
equivalent to the trivial knot.

Another way to look at Eq. (6) is from the point of view
of p dependence. For the very long chain, with N ¿ N0,
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topological “memory” acts as an excluded volume for
relatively simple knots, with p , N�N0, for which R
obeys the last line of Eq. (6). With increasing knot com-
plexity, the system crosses over to the other regime, de-
scribed by the upper line in Eq. (6). Note that at the
crossover the chain size is about R � lN1�3N1�6

0
. In terms

of N dependence, this is already a collapsed chain, al-
though there is an extra “swelling” factor N1�6

0
� 2.6.

Note also that the maximal value of entropy (5) is about
S � 2p: the knot creates about one constraint per poly-
mer length which is about tube diameter.

As we mentioned, there is an alternative way to maxi-
mize entropy, which we call “phase segregated.” To ex-
plain what we mean by that, consider first a prime knot. It
may be entropically favorable to tighten this knot as much
as possible, losing virtually all the freedom for segments
involved in the tight knot, but gaining maximal entropy
for the rest of the chain which then fluctuates as a free un-
knotted loop. For the composite knot, this picture must be
slightly modified: We still imagine a long free unknotted
loop with several little knots —prime components of the
original composite knot — independently tightened in dif-
ferent places on the loop. To estimate roughly the entropy
of such a knot segregated state, we can use again formula
(5), applying it twice (or several times for a composite
knot): for the tightened part, where p is roughly equal to
that of the original knot, and for the unknotted loop part,
where p is of order 1. The chain lengths for these two
are about p and N 2 p, respectively. Since equilibrium
entropy is linear in p, this simplest estimate yields that the
phase segregated state is about as favorable entropically as
the uniform one. A more sophisticated approach may be
needed to decide which of them is more stable. It is also
likely that the answer is sensitive to the details of local
chain geometry (e.g., freely joined vs wormlike segments,
and the like). For one particular model, the segregated
state with tightened knot was observed in recent simula-
tion work [24].

Although the qualitative statement that ptl�N� is practi-
cally zero for long rings is sufficient for the main stream
of arguments in this paper, to estimate ptl�N� is itself an
interesting problem. The simple estimate is obtained in the
following way. Consider two strongly overlapping rings.
Since we are counting probabilities over all possible con-
figurations of rings, regardless of their knots, the statistics
is Gaussian, and there should be about

p
N contacts be-

tween the rings. As long as N is not very large, each con-
tact can be thought of as being capable of providing up to
one (positive or negative) unit of linking. Therefore, there
are about

p
N different linking states, with the probability

of order 1�
p

N for each of them, including the untangled
one. When N gets really very large, the situation becomes
more complicated, because each of the

p
N “contacts” is it-

self a large crowd of segments, which can realize a variety
of linking arrangements. Since entanglements in differ-
ent contact regions do not commute to each other in this
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regime [25], there appears exponential diversity of differ-
ent types of links. Adjusting prefactors for continuity, we
arrive at

ptl�N� �

( p
N1�N if N , N1

exp�1 2
p

N�N1 � if N . N1
, (7)

where subscript “tl” stays for the trivial link, N1 is the
characteristic length. The first line of this formula is in a
very good agreement with the simulation data [25] where
links of the lengths up to 500 were examined. This is
consistent with our conjecture that N1 is of the order of
N0. It would be interesting to simulate longer chains, as
we expect the N dependence to crossover to exponential
in the range of several hundred segments.

So far we have been considering a thin polymer with no
excluded volume effect. What happens if volume interac-
tions are presented? It is fairly obvious that the scaling
exponent at very large N remains equal n. The crossover to
this regime occurs when N exceeds both pkN0 (6) for the
given knot k and �l�d�2 for the chain diameter d [7]. More
detailed analysis, including cases of good and poor solvent,
can be easily performed on the Flory theory level, combin-
ing the entropy (5) with the volume interactions term. This
sheds light on the long-standing puzzle of extreme sensi-
tivity of the knotting probability to the excluded volume
[26]. As in the usual Flory theory for linear chains, as
soon as entropy (5) is written with correlations taken into
account, the volume interactions part should be written ac-
cordingly (e.g., proportional to the density to the power
�2.25 instead of 2; see [22,27] for details).

To conclude, it is worth making it absolutely clear that
this Letter deals with isolated loops, or loops in a very
dilute solution only. In a melt or concentrated solution
of unconcatenated rings, each ring is contracted [28]; this
situation remains under close scrutiny [29].
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