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Bifurcation in Viscoresistive MHD: The Hartmann Number and the Reversed Field Pinch
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A scaling approach to the simplest viscoresistive MHD model reveals that the Prandtl number acts
only through the inertia term. When this term is negligible the dynamics is ruled by the Hartmann
number H only. This occurs for the reversed field pinch dynamics as seen by numerical simulation of
the model. When H is large the system is in a multiple helicity state. In the vicinity of H � 2500
the system displays temporal intermittency with laminar phases of quasi-single-helicity (SH) type. For
lower H’s two basins of SH are shown to coexist. SH regimes are of interest because of their nonchaotic
magnetic field.

PACS numbers: 52.30.Jb, 05.65.+b, 47.27.Cn, 52.55.Hc
In this Letter we consider the simplest viscoresistive
nonlinear magnetohydrodynamics (MHD) model which
is frequently used in the modeling of laboratory plasmas
[1,2]. References [3,4] write the viscoresistive compress-
ible MHD equation in the constant-pressure constant-
density approximation as

≠B
≠t

� = 3 �v 3 B� 2 = 3 �hJ� , (1)

≠v
≠t

1 �v ? =�v � J 3 B 1 =2�nv� , (2)

with J � = 3 B and = ? B � 0.
Note that the fluid acceleration appearing in the left-

hand side of Eq. (2) corresponds to the inertia force den-
sity, rdv�dt, since the density has been dropped out from
our model equations, due to the constant density approxi-
mation. Here time and velocity are normalized to the
Alfvén time and velocity, respectively, and the other vari-
ables to macroscopic values: in these units h is the inverse
Lundquist number, h � tA�tR � S21, and n corresponds
to the inverse magnetic Reynolds number, n � tA�tV �
R21, for a scalar kinematic viscosity. These numbers rep-
resent a set of two dimensionless numbers relevant to our
discussion. These two parameters may be combined in
several ways to convert them into two different classical di-
mensionless parameters. A tradition coming from resistive
MHD has given a leading role to the pair Lundquist num-
ber S and magnetic Prandtl number P � n�h. The first
part of this Letter introduces a simple scaling approach to
these equations which reveals that P is naturally combined
with the Hartmann number H � �hn�21�2 in a modified
set of coupled equations. These rescaled equations prove to
be extremely useful in the frequent case in plasma physics
where the impact of the inertia term fades away in Eq. (2).
Then the rescaled equations show the dynamics is ruled by
a unique dimensionless parameter: H. The importance of
this number was first pointed out for magnetic confinement
in Refs. [5–7].
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The second part of this Letter proposes a new under-
standing of the turbulent-laminar transition in the reversed
field pinch (RFP) based on an extended series of numeri-
cal simulations which are analyzed in reference to phase
transition, bifurcation, temporal intermittency, and fluid
dynamics theories. The RFP is a magnetic confinement de-
vice belonging to the family of the stabilized z-pinches like
the tokamak, but working at higher toroidal current; this
induces a process of magnetic self-organization leading to
the reversal of the toroidal magnetic field in the outer part
of the plasma [1,2,8]. The turbulent-laminar transition in
the RFP corresponds to the passage from a multiple helic-
ity (MH) to a single helicity (SH) state, so-called with ref-
erence to the number of helical components in the Fourier
spectrum of the fields. This SH state has a sign of helicity
opposite to that of the helical state in Taylor’s theory of
relaxation [9]. Numerical works in the early nineties indi-
cated the possibility to induce such dynamical transitions
in a RFP configuration by acting on the dissipation coeffi-
cients [3,4,10]. In contrast to the preceding results about
this transition which proposed P as a control parameter
at fixed S, we show, as an illustration to the first part of
the Letter, that H is the true and unique control parameter
in the physical regimes of interest. The turbulent-laminar
transition may be viewed as a second order phase transition
and we introduce a simple order parameter to character-
ize it.

We now want to focus on the case where the inertia
term in Eq. (2) is small with respect to the two other ones.
First consider the case where it may be neglected. As this
limit includes that of high viscosity, we may suspect that
normalizing time to the Alfvén time is not the most appro-
priate. When setting t � nahbt̄, parameters n and h are
present in the two limit equations only through their prod-
uct for a � 2b � 1�2. Therefore we apply to Eqs. (1)
and (2) the rescaling:

t ! t̄ �

r
h

n
t , (3)
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with the corresponding rescaling of velocity v ! v̄ �p
�n�h� v . This yields

≠B
≠t̄

� = 3 �v̄ 3 B� 2 = 3 �H21J� , (4)

P21

∑
≠v̄
≠t̄

1 �v̄ ? =�v̄
∏

� J 3 B 1 =2�H21v̄� , (5)

where H is the Hartmann number and P is the Prandtl
number introduced above. The rescaled dynamics depends
only on the value of the Hartmann number when the inertia
term becomes negligible. This is shown here to be the case
when studying the properties of the time averaged global
quantities characterizing the RFP configurations. The
benefit of the proposed transformation extends straightfor-
wardly to more general and complete MHD modeling than
our RFP-oriented model equations such as, for instance,
working in vorticity representation, and including pressure
and density evolution, nonuniform magnetic diffusivity,
and kinematic viscosity; however isotropic transport
coefficients are to be considered.

Previous studies pointed out H to be the unique in-
trinsic physical control parameter: (i) this was rigorously
shown in Ref. [5] for the linear stability analysis of visco-
resistive MHD modes in an incompressible plasma with a
vanishing velocity field (see also Ref. [6] and references
therein); (ii) it appeared through the combination H21�3

in Ref. [11] for a bifurcation approach of tearing modes
in the magnetic slab configuration. Equations similar to
Eqs. (4) and (5) are used for the convective instability of
a horizontal fluid layer [12–14]. There the Prandtl num-
ber is also present through its inverse as a coefficient in
the inertia term only. The Rayleigh number of the thermal
convection system is the analog of the Hartmann number
by combining kinematic viscosity and thermal conductiv-
ity through their product. For both systems the aspect ratio
(R�a for a toroidal plasma, with R, a major and minor ra-
dius) is a geometrical control parameter [13,15,16]. Our
system is expected to be sensitive also to the pinch parame-
ter: Q � Bu�a���Bz� (with u, z the azimuthal and ax-
ial coordinates). It controls equilibrium bifurcations with
a breaking of the axial symmetry, for example, in the
case of the tokamak, in terms of the Kruskal-Shafranov
ideal stability limit for external kink modes (see, for ex-
ample, [1]); this limit is usually expressed as qa . 1, [with
qa � aBz�a��RBu�a�], and may be written approximately
in terms of the pinch parameter and of the aspect ratio as
Q , a�R. Q also rules bifurcations in simulations with
Eqs. (1) and (2) for a tokamaklike configuration [6,7]. This
dimensionless number is related to the strength of the driv-
ing on the system as it is proportional to the ratio of the
total current to the magnetic flux. In this sense, the role of
the temperature gradient in the Rayleigh number is analo-
gous to that of the current in the pinch parameter.

Recent experimental observations of quasi-SH (QSH)
states, mostly in RFX [17,18], the largest present RFP,
have called for a more precise definition of the SH/MH
transition. Laminar helical states are of interest for fusion
studies because of the nonchaotic character of the pure SH
magnetic field and therefore improved confinement proper-
ties may be expected for these regimes [17–19]. We now
describe the results of our study based on the numerical
simulation of the nonlinear model (1), (2), which correct
and complement the previous bifurcation picture [3,10]
in several respects. Two values of the Lundquist num-
ber are considered: h21 � 3.3 3 103, h21 � 3.0 3 104,
corresponding to a choice of P in the intervals � 2

3 , 10�
and �1, 5000�. The plasma current and the toroidal mag-
netic flux are constant, and thus so is the pinch parameter,
Q � 1.9. The RFP is simulated as a straight periodic
cylinder with periodicity 2pR, and the aspect ratio is
R�a � 4. More details concerning the numerical mod-
eling may be found in Ref. [4].

Figure 1 displays the kinetic energy, as the volume inte-
gral value, corresponding to the usual velocity field v , and
to the rescaled field v̄ . This picture supports rescaling (3)
and the Hartmann number as a good parameter to organize
results. In fact, for the rescaled quantity, the points group
as for a single value function of H, instead of lying on
two separate curves. The numerical simulations reveal that
the temporal intervals needed for good statistical averages
scale as the viscoresistive time tvr � P1�2tA, consistently
with the transformation (3).

The most unstable modes in RFP configurations corre-
spond to m � 1. These modes are in general the largest
ones in the system. They generate by nonlinear coupling
the energy transfer to m � 0 and m � 2, 3, . . . modes
[20,21]. On the contrary in the SH state only one m � 1
axial component, nSH, and its higher harmonics,
m�n � 1�nSH, appear in the spectrum. When the system
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FIG. 1. Time averaged total kinetic energy of the spectral com-
ponent m � 1 for the original velocity field, v, and the rescaled
one, v̄; triangles for EK

m�1, diamonds for 10 ĒK
m�1 � 10 PEK

m�1
(an amplification factor of 10 has been used to avoid super-
position of points); open and black symbols, respectively, for
S � 3.3 3 103 and S � 3.0 3 104.
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settles in such a SH state starting from a MH condition,
the m � 0 energy is seen to decay exponentially in
time toward the pure helically symmetric magnetic SH
configurations. Therefore the m � 0 mode energy EM

m�0
represents an order parameter for the system which dis-
tinguishes the SH case from the MH one. Figure 2 plots
EM

m�0 vs H for the two previous values of the Lundquist
number. This picture shows that on average our system
reaches conditions where the impact of the inertia term in
Eq. (5) becomes negligible and where H rules the qualita-
tive dynamics as a unique control parameter independently
of P even when it is of the order of 1. Indeed a direct
estimate of the global power flow associated with the
model equations yields, on average, values of the inertia
term 2 orders of magnitude lower than the Lorentz and
viscous ones. Furthermore Fig. 2 highlights a dynamical
transition from a turbulent to a laminar regime in the
interval H � 2000 3000. Above these critical values
the system is in the MH state, and m � 0 modes reach
their highest amplitude. At low values of the Hartmann
number, below the transition interval, the system enters a
laminar SH regime (as usual in nonlinear dynamics a high
dissipation is favorable to laminar motion). This occurs
when starting with a MH spectrum or with a SH spectrum
with a small perturbation of MH type: these states are
stable to three-dimensional perturbations. The SH regime
corresponds to two basins of attraction characterized by
helicity values: m�n � 1�11 and m�n � 1�12; both cor-
respond to internal resonant modes, i.e., modes resonating
inside of the region with a nonreversed magnetic field. As
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FIG. 2. Time averaged magnetic energies of the spectral com-
ponent m � 0; open triangles for S � 3.3 3 103, P [ � 2

3 , 10�;
black triangles for S � 3.0 3 104, P [ �1, 5000�; open circles
for simulations where the initial condition is a slightly perturbed
SH state; the other symbols refer to simulations started with fully
developed turbulent states; for a convenient representation in the
log-scale plot the vanishing SH energy is represented with a fi-
nite value, about 	1026, differing for the two helicities.
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for the convective instability of a horizontal fluid layer
[13], the existence of these two basins could be due to
the finite value of R�a which prevents the system from
developing the most unstable mode of the infinite R�a
case, but selects one of the two adjacent ones. For a given
Q, an appropriate choice of the aspect ratio, might select
the optimum one. In MH regime the system displays
turbulent dynamics with sharper quasiperiodical relaxation
events [1,2] the higher the H value. Macroscopic current
sheet structures form in the plasma for values larger
than HSP 
 3.0 3 104: in this regime a Sweet-Parker
dynamics is expected to dominate [4].

We now try to compare these values with the experi-
mental estimates obtained for the dissipation coefficients.
Present experiments are characterized by S 	 105 107

(when using the Spitzer formula for the resistivity, which is
a commonly accepted choice as motivated in Ref. [22] and
references therein). Therefore the corresponding Prandtl
number to get a value of the order of Hc is Pc � S2�H2

c 	
103 107. Note that as Pc scales like h22 and P scales
like h21, an anomalous enhancement of resistivity would
be favorable to reach SH states. A collisional estimate
of n� would yield P� 	 1. However anomalous viscosity
mechanisms are likely to be active in the RFP [22,23], such
as those related to ion temperature gradient (ITG) driven
instabilities, as discussed in a recent analysis of RFX data
[22]. This was proposed in the past to explain the anoma-
lous ion heating diagnosed in several RFPs [24].

When applied to experiments where QSH states were
found in RFX [17,18], this ITG estimate yields P 	 100
which is closer to the range where numerical SH states are
obtained.

The dynamics in the transition region corresponds to a
temporal intermittency [25] whose laminar phases are of a
QSH type: the m � 0 modes may keep for long time in-
tervals finite energy values in the range spanning a couple
of orders of magnitude down by the typical MH condi-
tions. In these cases the preferred helicities correspond
to the two preferred values in SH states. As an example
of these different dynamical situations, we show in Fig. 3
the temporal evolution of (m � 1, n) modes for the vari-
ous n’s included in the computation. The two evolutions
are obtained by starting the simulations with different ini-
tial conditions: in Fig. 3a, a perturbed 1�11 single helic-
ity condition is used, while in Fig. 3b a MH initial state
is chosen. The H number is the same for the two cases:
H � 3000. In the case of Fig. 3a the system switches to a
1�12 QSH from a 1�11 QSH after a short period of energy
exchange between modes. Note how the preferred helic-
ities of the system, corresponding to the two SH basins,
may persist for long time intervals compared with the typi-
cal time scale of MH dynamics (Fig. 3b).

Long transients of this kind in the intermediate regime
yield different values of EM

m�0 over the finite duration of the
simulations, as seen, for example, in Fig. 2 at H � 3000
where the black triangles give the value in correspondence
of the different dynamical stages shown in Fig. 3. These
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FIG. 3. Intermittent behavior in the transition region: temporal
evolution of the magnetic energy for the (m � 1, n) modes with
the various n’s included in the computation. The two evolutions
are obtained by starting the simulations with different initial
conditions at the same H � 3000 value. (a) shows the typical
behavior of QSH regimes, (b) MH shows a typical MH turbulent
regime.

transients were probably at the origin of the claim of the ex-
istence of a SH basin in parallel to the MH one in Ref. [10].
The existence of two basins of attraction and of an inter-
mediate regime of temporal intermittency shows the exis-
tence of the bifurcation of a pair of stable fixed points in
the dynamics [25]. We notice that the SH/MH transition is
analogous to a second order phase transition where EM

m�0
is the order parameter, H the control parameter, and where
the intermediate QSH regime corresponds to the critical
divergence of the correlation scales.

In conclusion the role of the Hartmann and Prandtl
numbers in viscoresistive MHD and the description of the
SH/MH transition in the RFP are clarified in several im-
portant respects: if P is not small, it has a vanishing role
in controlling the dynamics, and H becomes the only con-
trol parameter of the nonlinear system; by using the m � 0
modes energy as an order parameter, a clear diagram is ob-
tained for the SH/MH transition in the RFP. A threshold
region showing intermittent periods of QSH is found which
suggests the analogy with a second order phase transition.
Pure SH states are the only stable state of the system when
H is low enough. This supports the search for such pure
and robust laminar regimes on the experimental side. Note
that boundaries spoiled by magnetic field errors, such as in
a real system, may force a QSH state from preventing the
achievement of the orderly SH regime.

Future work is needed to assess the nature of the inter-
mittent regime of the SH/MH transition, the impact on this
transition of the aspect ratio, of the pinch parameter, and
of transport physics. Efforts should also be devoted to the
assessment of viscous effects, still an open issue in plasma
physics (see, for example, the discussion in [5–7]). In this
respect, anomalous contributions should also be considered
for the RFP configurations [23]. Another issue for further
investigation is related to the improvement of the boundary
conditions: possibly forcing the right ones might enable
one to reach the pure and robust laminar SH regime. Such
a work will be important to assess the reactor relevance of
the SH state of the RFP and of its regular magnetic field.
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