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An exact invariant is derived for three-dimensional Hamiltonian systems of N particles confined
within a general velocity-independent potential. The invariant is found to contain a time-dependent
function f2�t�, embodying a solution of a third-order differential equation whose coefficients depend on
the explicitly known trajectories of the particle ensemble. Our result is applied to a one-dimensional
time-dependent nonlinear oscillator and to a system of Coulomb interacting particles in a time-dependent
quadratic external potential.

PACS numbers: 41.85.–p, 45.50.Jf
We consider a system of a nonrelativistic ensemble of
N particles of the same species moving in an explicitly
time-dependent and velocity-independent potential, whose
Hamiltonian H takes the form

H �
NX

i�1

1
2 �p2

x,i 1 p2
y,i 1 p2

z,i� 1 V � �x, �y, �z, t� , (1)

with �x, �y, and �z the N component vectors of the spatial co-
ordinates of all particles. It is hereby assumed that the sys-
tem may be completely described within 6N-dimensional
Cartesian phase space spanned by the 3N particle coordi-
nates and their conjugate momenta. From the canonical
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equations, we derive for each particle i the equations of
motion

�xi � px,i , �px,i � 2
≠V � �x, �y, �z, t�

≠xi
, (2)

and likewise for the y and z degrees of freedom. The solu-
tion functions �x�t�, �y�t�, �z�t�, and �px�t�, �py�t�, �pz�t� define
a path within the 6N-dimensional phase space that com-
pletely describes the system’s time evolution. A quantity

I � I� �x�t�, �px�t�, �y�t�, �py�t�, �z�t�, �pz�t�, t� (3)

constitutes an invariant of the particle motion if its total
time derivative vanishes:
dI
dt

�
≠I
≠t

1

NX
i�1

∑
≠I
≠xi

�xi 1
≠I
≠yi

�yi 1
≠I
≠zi

�zi 1
≠I

≠px,i
�px,i 1

≠I
≠py,i

�py,i 1
≠I

≠pz,i
�pz,i

∏
� 0 .

We examine the existence of a conserved quantity (3) for a system described by (1) with a special ansatz for I being at
most quadratic in the velocities [1]

I �
X

i

� f2�t� �p2
x,i 1 p2

y,i 1 p2
z,i� 1 f1�xi , t�px,i 1 g1� yi , t�py,i 1 h1�zi , t�pz,i� 1 f0� �x, �y, �z, t� . (4)

The set of functions f2�t�, f1�xi , t�, g1� yi , t�, h1�zi , t�, and f0� �x, �y, �z, t� that render I invariant are to be determined. With
the single particle equations of motion (2), a vanishing total time derivative of Eq. (4) means explicitly

X
i

∑
� �x2

i 1 �y2
i 1 �z2

i �
df2

dt
1 �xi

≠f1

≠t
1 �yi

≠g1

≠t
1 �zi

≠h1

≠t
1 �x2

i
≠f1

≠xi
1 �y2

i
≠g1

≠yi
1 �z2

i
≠h1

≠zi
1 �xi

≠f0

≠xi
1

�yi
≠f0

≠yi
1 �zi

≠f0

≠zi
2 �2f2 �xi 1 f1�

≠V
≠xi

2 �2f2 �yi 1 g1�
≠V
≠yi

2 �2f2 �zi 1 h1�
≠V
≠zi

∏
1

≠f0

≠t
� 0 . (5)
We may arrange the terms of this equation with regard to
their power in the velocities �xi , �yi , and �zi . Equation (5)
must hold independently of the specific phase-space lo-
cation of each individual particle i. Therefore, the co-
efficients pertaining to the velocity powers must vanish
separately for each index i. The condition for the terms
proportional to �x2

i is

≠f1�xi , t�
≠xi

1
df2�t�

dt
� 0 ,

and similarly for the functions g1 and h1. It follows that
f1�xi , t�, g1� yi , t�, and h1�zi , t� must be linear functions in
xi , yi , and zi , respectively,

f1�xi , t� � 2 �f2�t�xi 1 bx,i�t� , (6a)

g1� yi , t� � 2 �f2�t�yi 1 by,i�t� , (6b)

h1�zi , t� � 2 �f2�t�zi 1 bz,i�t� , (6c)

with bx,i�t�, by,i�t�, and bz,i�t� defined as arbitrary func-
tions of time only.

The terms of Eq. (5) that are linear in �xi sum up to

≠f1

≠t
1

≠f0

≠xi
2 2f2�t�

≠V
≠xi

� 0 . (7)
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In order to eliminate ≠f1�≠t from (7), we calculate the
partial time derivative of f1�xi , t� from Eq. (6a):

≠f1

≠t
� 2f̈2�t�xi 1 �bx,i�t� . (8)

Again, similar expressions apply to ≠g1�≠t and ≠h1�≠t.
Inserting (8) into (7), and solving for the terms containing
the partial derivatives of the yet unknown but arbitrary
ancillary function f0� �x, �y, �z, t�, one obtains the following
three differential equations for f0:
≠f0

≠xi
� f̈2�t�xi 2 �bx,i�t� 1 2f2�t�

≠V
≠xi

, (9a)

≠f0

≠yi
� f̈2�t�yi 2 �by,i�t� 1 2f2�t�

≠V
≠yi

, (9b)

≠f0

≠zi
� f̈2�t�zi 2 �bz,i�t� 1 2f2�t�

≠V
≠zi

. (9c)

A function f0� �x, �y, �z, t� with partial derivatives (9) is ob-
viously given by
f0� �x, �y, �z, t� � 2f2�t�V � �x, �y, �z, t� 1
X

i

� 1
2 f̈2�x2

i 1 y2
i 1 z2

i � 2 �bx,ixi 2 �by,iyi 2 �bz,izi� . (10)

The remaining terms of Eq. (5) do not depend on the velocities �xi , �yi , and �zi . With (6), these terms impose the following
condition for I to embody an invariant of the particle motion:X

i

∑
� �f2xi 2 bx,i�

≠V
≠xi

1 � �f2yi 2 by,i�
≠V
≠yi

1 � �f2zi 2 bz,i�
≠V
≠zi

∏
1

≠f0

≠t
� 0 . (11)

In order to express Eq. (11) in a closed form for f2�t�, one has to eliminate ≠f0�≠t. To this end, we calculate the partial
time derivative of Eq. (10), i.e., the time derivative at fixed particle coordinates xi , yi , and zi:

≠f0� �x, �y, �z, t�
≠t

� 2 �f2�t�V 1 2f2�t�
≠V
≠t

1
X

i

� 1
2

...
f 2�x2

i 1 y2
i 1 z2

i � 2 b̈x,ixi 2 b̈y,iyi 2 b̈z,izi� . (12)

Inserting Eq. (12) into Eq. (13), we finally get a linear third-order differential equation for f2�t� and the bx,y,z;i�t�
that depends only on the spatial variables of the particle ensemble

2 �f2�t�V 1 2f2�t�
≠V
≠t

1
X

i

∑
1
2

...
f 2�t� �x2

i 1 y2
i 1 z2

i � 1 �f2�t�
µ
xi

≠V
≠xi

1 yi
≠V
≠yi

1 zi
≠V
≠zi

∂
1

bx,i ẍi 2 b̈x,ixi 1 by,i ÿi 2 b̈y,iyi 1 bz,i z̈i 2 b̈z,izi

∏
� 0 . (13)
At this point, it is helpful to review our derivation made
so far. Speaking of an invariant I of the particle motion
means explicitly to pinpoint a quantity (3) that is conserved
along the phase-space path representing the system’s time
evolution. This path is defined as the subset of the 6N-
dimensional phase space on which the equations of motion
(2) are fulfilled. In order to work out the invariant I of the
particle motion, the equations of motion (2) have been in-
serted into the expression for dI�dt � 0 in Eq. (5). This
means that the domain of (5), and hence the physical sig-
nificance of the subsequent equation (13), is restricted to
the actual phase-space path. Along the phase-space path,
all terms of Eq. (13) that depend on the particle trajecto-
ries are in fact functions of the parameter t only. Accord-
ingly, the potential V � �x�t�, �y�t�, �z�t�, t� and its derivatives
are time-dependent coefficients of an ordinary differential
equation for f2�t�. In contrast to Ref. [1], Eq. (13) is not
conceived as a partial differential equation for V in our
context.

With f2�t� representing a solution of (13), the invari-
ant I follows from (4), (6), and (10) together with the
Hamiltonian (1) as
I � 2f2�t�H 1
X

i

�2 �f2�t� �xipx,i 1 yipy,i 1 zipz,i� 1
1
2 f̈2�t� �x2

i 1 y2
i 1 z2

i �

1 bx,ipx,i 2 �bx,ixi 1 by,ipy,i 2 �by,iyi 1 bz,ipz,i 2 �bz,izi� . (14)

The invariant (14) is easily shown to embody a time integral of Eq. (13) by calculating the total time derivative of (14)
and by inserting the single particle equations of motion (2). Hence, Eq. (14) provides a time integral of Eq. (13) if and
only if the system’s evolution is governed by the equations of motion (2).

From their definition in Eqs. (6), bx,i�t�, by,i�t�, and bz,i�t� are arbitrary functions of time that do not depend on f2�t�.
As a consequence, the sums over the terms containing the respective functions in Eq. (13) must vanish separately:

�f2�t�
µ
2V 1

NX
i�1

∑
xi

≠V
≠xi

1 yi
≠V
≠yi

1 zi
≠V
≠zi

∏∂
1 2f2�t�

≠V
≠t

1
...
f 2�t�

NX
i�1

1
2 �x2

i 1 y2
i 1 z2

i � � 0 , (15)

bx,i ẍi 2 b̈x,ixi � 0, by,i ÿi 2 b̈y,iyi � 0, bz,i z̈i 2 b̈z,izi � 0, i � 1, . . . , N . (150)
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We thus obtain the following distinct invariants:

If2 � 2f2�t�H 2 �f2�t�
NX

i�1

�xipx,i 1 yipy,i 1 zipz,i� 1 f̈2�t�
NX

i�1

1
2 �x2

i 1 y2
i 1 z2

i � , (16)

Ibx,i � bx,ipx,i 2 �bx,ixi , Iby,i � by,ipy,i 2 �by,iyi , Ibz,i � bz,ipz,i 2 �bz,izi , i � 1, . . . , N . (160)
Regarding Eq. (15), one finds that for the special case
≠V�≠t � 0; hence for autonomous systems, f2�t� � const
is always a solution of Eq. (15). For this case, the invari-
ant (16) reduces to If2 ~ H, thus providing the system’s
total energy, which is a known invariant for Hamiltonian
systems with no explicit time dependence. Nevertheless,
Eq. (15) also allows for solutions f2�t� fi const for these
systems. We thereby obtain other nontrivial invariants for
autonomous systems that exist in addition to the invariant
representing the energy conservation law.

Equation (15) can be significantly simplified for poten-
tials V that may be expressed as a sum of homogeneous
functions V �

P
m Vm. By definition, Vm is referred to as

homogeneous if for every real l . 0 and all �x, �y, and �z
the condition

Vm�l �x, l�z, l�z, t� � lkm Vm� �x, �z, �z, t�
is satisfied, km specifying the degree of homogeneity of
Vm. With V a sum of homogeneous functions, Euler’s
relation may be written as

NX
i�1

∑
xi

≠V
≠xi

1 yi
≠V
≠yi

1 zi
≠V
≠zi

∏
�

X
m

kmVm . (17)

Using (17), the differential equation (15) for f2�t� finally
reads for homogeneous potential functions Vm

2f2
≠V
≠t

1 �f2

X
m

�km 1 2�Vm 1

...
f 2

NX
i�1

1
2 �x2

i 1 y2
i 1 z2

i � � 0 . (18)

As a simple example, we investigate the one-dimensional
nonlinear Hamiltonian system of a time-dependent “asym-
metric spring,” defined by

H �
1
2p2 1

1
2v2�t�x2 1 a�t�x3. (19)

The related equation of motion follows as

ẍ 1 v2�t�x 1 3a�t�x2 � 0 . (20)

The invariant If2 is immediately found writing down the
general invariant (16) for one dimension and one particle
with the Hamiltonian H given by (19)

If2 � f2�p2 1 v2x2 1 2ax3� 2 �f2xp 1
1
2 f̈2x2. (21)

The function f2�t� for this particular case is given as a
solution of the third-order differential equation

...
f 2 1 4 �f2v2 1 4f2v �v 1 x�t� �4f2 �a 1 10 �f2a� � 0 ,

(22)

which follows from (15) or, equivalently, from (18). Since
the particle trajectory x � x�t� is explicitly contained in
Eq. (22), it must be known prior to integrating Eq. (22).
The trajectory is obtained integrating the equation of
motion (20).
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We may easily convince ourselves that If2 is indeed a
conserved quantity. Calculating the total time derivative
of Eq. (21), and inserting the equation of motion (20), we
end up with Eq. (22), which is fulfilled by a definition of
f2�t� for the given trajectory x � x�t�.

The third-order equation (22) may be converted into
a coupled set of first- and second-order equations. With
the substitution r2

x �t� � f2�t�, the second-order equation
writes

r̈x 1 v2�t�rx 2
gx�t�
r3

x
� 0 . (23)

Equation (23) is equivalent to (22), provided that the
time derivative of the function gx�t�, introduced in (23),
is given by

�gx�t� � 2x�t� �2 �ar4
x 1 10ar3

x �rx� . (24)

Expressing the invariant (21) in terms of rx�t�, we get
inserting the auxiliary equation (23)

Irx � �rxp 2 �rxx�2 1
x2

r2
x

gx�t� 1 2a�t�r2
xx3. (25)

The invariant (25) reduces to the well-known Lewis in-
variant [2,3] for the time-dependent harmonic oscillator
if a�t� � 0, which means that gx�t� � const. For this
particular case, Eq. (24), and hence Eq. (23), no longer
depends on the specific particle trajectory x � x�t�. Con-
sequently, the solution functions rx�t� and �rx�t� apply to
all trajectories that follow from ẍ 1 v2�t�x � 0. With re-
gard to Eq. (15), we conclude that a decoupling from the
equations of motion (2) may occur for linear systems only.

A more challenging example is constituted by an en-
semble of Coulomb interacting particles of the same
species moving in a time-dependent quadratic external
potential, as typically given in the comoving frame for
charged particle beams that propagate through linear
external focusing devices

V � �x, �y, �z, t� �
X

i

"
1
2v2

x �t�x2
i 1

1
2v2

y �t�y2
i

1
1
2v2

z �t�z2
i 1

1
2

X
jfii

c1

rij

#
, (26)

with r2
ij � �xi 2 xj�2 1 � yi 2 yj�2 1 �zi 2 zj�2 and

c1 � q2�4pe0m, q and m denoting the particles’ charge
and mass, respectively. The equations of motion that
follow from (2) with (26) are

ẍi 1 v2
x�t�xi 2 c1

X
jfii

xi 2 xj

r3
ij

� 0 , (27)

and likewise for the y and z degrees of freedom. We note
that the factor 1�2 in front of the Coulomb interaction
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term in (26) disappears since each term occurs twice in
the symmetric form of the double sum.

Equation (26) may be split into a sum of two homoge-
neous functions, namely, the focusing potential part with
the degree of homogeneity k1 � 2, and the Coulomb in-
teraction part, the latter with the degree k2 � 21. Conse-
quently, the third-order differential equation (18) for f2�t�
reads (after rearranging)
X
i

∑
�f2

X
jfii

c1

rij
1 x2

i �
...
f 2 1 4 �f2v2

x 1 4f2vx �vx� 1 y2
i �

...
f 2 1 4 �f2v2

y 1 4f2vy �vy� 1

z2
i �

...
f 2 1 4 �f2v2

z 1 4f2vz �vz�
∏

� 0 . (28)
Of course, the same result is obtained if the potential func-
tion (26) is directly inserted into Eq. (15).

The invariant If2 for a system determined by the Ham-
iltonian (1) containing the potential (26) is given by (16),
provided that f2�t� is a solution of (28).

Equation (28) may be cast into a compact form if the
sums over the particle coordinates are written in terms of
“second beam moments,” denoted as �x2� for the x direc-
tion. The double sum over the Coulomb interaction terms
constitutes the electric field energy W�t� of all particles

�x2� �t� �
1
N

X
i

x2
i �t�, W�t� �

m
2

X
i

X
jfii

c1

rij
.

Substituting r2�t� � f2�t� and defining the function g �
g�t� according to

g�t� � �x2�r3�r̈ 1 v2
x �t�r� 1 � y2�r3�r̈ 1 v2

y�t�r�
1 �z2�r3�r̈ 1 v2

z �t�r� , (29)

the third-order equation (28) can be transformed into an
equivalent coupled system of a second-order equation for
r�t�, and a first-order equation for g�t�, thereby eliminat-
ing the derivatives �vx,y,z�t� of the lattice functions. Solv-
ing (29) for r̈�t� means to express it in the form of an
“envelope equation”

r̈ 1 v2�t�r 2
g�t�

r3��x2� 1 � y2� 1 �z2��
� 0 , (30)

with the “average focusing function” v2�t� defined as

v2�t� �
v2

x �x2� 1 v2
y � y2� 1 v2

z �z2�
�x2� 1 � y2� 1 �z2�

.

Equation (30) is equivalent to (28) if the derivative of g�t�
satisfies

�g�t� � 2r3

µ
�xpx� �r̈ 1 v2

xr� 1 � ypy� �r̈ 1 v2
yr�

1 �zpz� �r̈ 1 v2
z r� 2

W
mN

�r

∂
. (31)

Expressed in terms of r�t� and g�t�, the invariant (16)
writes

Ir�N � ��rpx 2 �rx�2� 1 ��rpy 2 �ry�2�

1 ��rpz 2 �rz�2� 1 r2 2W
mN

1
g�t�
r2 .

We used the function r�t� resulting from a numerical
integration of the coupled set of differential equations
(30) and (31) for given focusing functions v2
x �t�, v2

y �t�,
v2

z �t� and initial conditions g�0�, r�0�, �r�0�. The time-
dependent coefficients contained herein, namely the
second-order beam moments as well as the field energy
W�t�, were obtained from a three-dimensional simulation
of a charged particle beam propagating through a periodic
focusing lattice with non-negligible Coulomb interaction,
as described by the potential function (26). We observe
that for appropriate initial conditions the obtained evolu-
tion of r�t� is approximately periodic, as imposed by the
cell length of the periodic focusing lattice.

With regard to Eq. (30), we may interpret the func-
tion r�t� as a “generalized beam envelope.” Since the
individual interparticle forces are included in (26), non-
Liouvillean effects [4] emerging from the granular nature
of charge distributions are also covered.

As an outlook, we point out that a major benefit of our
result may be derived in the realm of numerical simula-
tions of systems described by (1). Equation (16) embodies
a time integral of Eq. (15), provided that the phase-space
flow of the particle ensemble is strictly consistent with
the equations of motion (2). This strict consistency can
never be accomplished if the time evolution of the par-
ticle ensemble is obtained from a computer simulation
because of the generally limited accuracy of numerical
methods. Under these circumstances, the quantity If2 as
given by Eq. (16)—with f2�t�, �f2�t�, and f̈2�t� following
from (15)—can no longer be expected to be strictly con-
stant. The deviation of a numerically obtained If2 from a
constant of motion may thus be used as a posteriori error
estimation for the respective simulation.

We finally note that the procedure to derive a quantity
I that is conserved along a system’s phase-space path can
straightforwardly be generalized on the basis of (4) to po-
tentials with quadratic velocity dependence.
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